Synchrony in the motor system and control of skilled hand movements

Roger Lemon

Sobell Department of Motor Neuroscience and Movement Disorders

INSTITUTE OF NEUROLOGY
University College London

Gatsby 2005
THE HAND: culture, amusement, craft, technology, medicine….

Stroke: UK: 100,000 new cases per year, 50% have hand disabilities

Cerebral Palsy: UK: 1800 new cases per year
Corticospinal System

- Corticospinal tract originates from widespread sensorimotor cortical areas
- Corticospinal neurons make direct monosynaptic connections with motoneurons, especially digit muscles
- These neurons are particularly active during skilled hand tasks
What does the cortico-motoneuronal (CM) system contribute to skilled hand control?

Focused control of muscles

- CM cells facilitate EMG activity in a focused group of muscles: the “muscle field”
- Probably reflects terminal arborisation of single CM axons
- CM cells can also exert profound post-spike suppression: suppressing unwanted muscular activity
What does the cortico-motoneuronal (CM) system contribute to skilled hand control?

CM cell muscle fields reflect functional synergies

- First dorsal interosseous (1DI)
- Flexor digit. profundis (FDP) (tendon)
- Adductor pollicis (AdP)

Gatsby 2005
Why study synchrony in the motor system?

- Oscillatory activity is widespread in the CNS

- In motor cortex oscillations occur at different frequencies

 alpha 8-12 Hz

 beta 15-30 Hz

 [gamma 40-80 Hz]

- Oscillations occur in task-related manner

- Effect of oscillations measurable in motor output

- Oscillations can encode specific motor parameters

Gatsby 2005
Transmission of synchronous activity through cortical networks

- convergence and divergence within a network
- weak synaptic connections between individual neurons
- this reduces probability of transmission of asynchronous activity, but enhances transmission of synchronous activity
- thus although synchrony may not increase the information content in the brain, it may be an important mechanism for transmitting information in a cortical network

Gatsby 2005
The precision grip task: humans and monkeys

- initial grip movement
- steady hold for ~ 1s
- release

Digit position

Digit muscle EMG

CM cell spikes: single unit

Local Field Potential: population activity
Evidence for different types of synchrony in the motor cortex

• short-term synchrony (‘synfire’)
 correlation peaks < 3 ms

• medium-term synchrony
 correlation peaks > 3 ms
 (typically 10-20 ms)
 occurs in at least two forms:

 Non-oscillatory
 (stochastic)

 Oscillatory

Gatsby 2005
Synchronous activity across a population of macaque motor cortex output neurons

16 electrode recording probe

Gatsby 2005

Baker et al JNP 2001
Getspike: a sophisticated means of converting analogue action potential spikes into digital events……

Extracellular action potentials

Interspike interval histograms

Principle component analysis

200 µV

1 ms

10 ms

100 ms

Gatsby 2005
Antidromic activation/activity patterns of CM cells

CM neuron 1

CM neuron 2

Spikes

Collision test

Interval histogram

Activity during task
Synchronous interactions between corticospinal neurons

Gatsby 2005

Baker et al JNP 2001
Cross-correlations must be corrected for task-related coactivation

Baker et al. 2000

Gatsby 2005
Population data: firing rate and synchrony show different task relationships during precision grip

- Most M1 neurons show a phasic burst (digit movement) followed by a tonic discharge (steady grip)

- Synchrony between neuron pairs is highest during the steady hold period

Baker et al JNP 2001

Gatsby 2005
Which cortical cells are synchronised together?
Correlation between pairs of CM cells

positive

negative

Gatsby 2005

Jackson et al
Neuron 2003
CM cells with positive synchrony have *similar* muscle fields

CM cells with negative synchrony have *opposing* post-spike effects
Type and strength of synchrony is related to the similarity of muscle field

- 114 CM cell pairs
- muscle divergence calculated from multidimensional vector:
 0°: perfect match
 90°: no overlap
 180°: opposite effect (facilitation vs suppression)
- neurones with heavily overlapping fields are strongly synchronised
- neurones with non-overlapping fields or exerting opposite actions do not discharge together
Double spike-triggered averaging: effects in STAs of the same muscle are not due to synchrony per se

Jackson et al., Neuron 2003

Gatsby 2005
Thus synchrony is greater between CM cells with similar muscles fields (A & B): these CM cells are actively recruited together.

CM cells with different muscle fields provide task-specific substrates for a wide repertoire of grasp types.
Oscillatory synchrony between cell pairs is pronounced during steady grip (hold phase)
15-30 Hz Local Field Potential activity in hold phase of precision grip task

Baker et al., 1997

Gatsby 2005
Does oscillatory activity include corticospinal neurons?

- Spike-triggered averages of the Local Field Potential from identified Pyramidal Tract Neurons (PTNs) shows that PTNs are phase-locked to the LFP oscillations.

- Activating many PTNs simultaneously can reset the phase of the ongoing oscillations.

Gatsby 2005
Can stimulation of the corticospinal tract reset the rhythm?

Case A: If the network generating 15-30 Hz oscillatory activity in the motor cortex involves corticospinal neurons, the LFP oscillations should be reset when the pyramidal tract is stimulated.

Case B: no reset occurs because corticospinal neurons are not part of the generating network.
A

movement onset

start of hold period

hold period stimulus

target limits

5 mm

finger

200 ms

thumb

B

1DI

LFP

C

Power Spectrogram of LFP

frequency (Hz)

power (µV^2)

Gatsby 2005
Corticospinal tract stimulus resets cortical rhythm

Gatsby 2005
15-30 Hz Local Field Potential activity in hold period of precision grip task

- LFP shows clear oscillatory activity in hold period, but not in movement phases (grip, release)

- LFP and EMG from contralateral hand muscles are phase-locked during the hold period
Coherence between cortex and muscle during steady grip

• “coherence” measures degree of phase-locking between oscillations in LFP and EMG

• Coherence in the 15-30 Hz frequency band is pronounced

• This coherence is present during steady grip, but abolished during movement

Gatsby 2005
Baker et al. 1997
Coherence in the beta frequency band

- between LFP and EMG
- between EMGs of different muscles

Gatsby 2005
Baker et al. 1997
Precision grip of a compliant/solid object in humans

Kilner et al., 1999
Coherence between cortical (MEG) and muscular activity during precision grip is also present in humans.
MEG-EMG coherence is related to the degree of object compliance

- coherence in the 15-30 Hz bandwidth shows no clear changes with force or displacement
- coherence in the 15-30 Hz bandwidth is most pronounced during grip of compliant objects
- coherence is least when solid objects are gripped

Influence of sensory inputs from the hand

• 15-30 Hz oscillations are generated centrally

• however, the variation in coherence with compliance suggests that sensory feedback from the hand can modulate the central rhythm

• cutaneous inputs from the finger tips (important for detecting level of grip force) are critical for handling compliant objects

• tested by examining effects on EMG-EMG coherence in volunteers with lignocaine block of digital nerves in the index finger and thumb
Digital nerve block reduces EMG-EMG coherence in the 15-30 Hz bandwidth

- pooled data (10 subjects)
- digital nerve block significantly reduces but does not abolish coherence
- suggests that during gripping tasks cutaneous feedback can boost centrally-generated oscillatory activity
15-30 Hz coherence is absent in a deafferented subject (GL)
CONCLUSIONS I

There is widespread synchrony in the 15-30 Hz range at the level of CELL POPULATIONS. This synchrony

• is coherent with contralateral EMG activity
• pronounced during periods of steady holding
• disappears during digit movement
• does not encode simple parameters: grip force/ displacement
• encodes control of more complex object properties such as compliance
• requires sensory input from the hand. Object “parameterisation”?
• could represent a ‘sensorimotor working memory’ important for maintaining steady grasp of everyday objects (food, tools etc)
CONCLUSIONS II

• during steady grasp populations of CM cells with similar muscle fields are *synchronised* together; this helps to sustain the ‘sensorimotor memory’ until a new manipulation is required

• CM cells with different muscle fields are the substrate of the many different possible types of grasp

• CM cells which exert opposite effects on a target muscle are actively de-synchronised

Synchrony in the motor system plays a useful functional role during grasp and manipulation