
350 Information Security

Essay 15

Cryptography
Marshall D. Abrams and Harold J. Podell

This essay discusses cryptographic protection of information
confidentiality and integrity as that information passes from one
point in space-time to another. More recent uses of cryptogra-
phy, such as authentication and nonrepudiation are also discussed.

The essay begins with an introduction of these ideas, including
some basic examples, then proceeds to the definition of a crypto-
graphic system, making the distinction between conventional
key or symmetric key schemes and public key or asymmetric key
schemes. We present some classical examples beginning with
Julius Caesar. Both substitution and permutation ciphers are
included, as well as a word about their weaknesses. The Data
Encryption Standard (DES) serves as an example of a product ci-
pher whose strength derives simply from repeated applications of
both permutations and substitutions.

The essay then turns to public key schemes or systems. A public
key system can be used by anyone to encrypt a message for a
given recipient but only that recipient can decrypt it. Although
there are many proposed in the open literature and three have
been widely implemented, we focus on the most popular system,
RSA. RSA (Rivest, Shamir, and Adleman) is a widely used public
key system whose strength lies in the difficulty of factoring cer-
tain large numbers.

A discussion of public key management is followed by an intro-
duction to public key and conventional key management issues.
We also discuss authentication and integrity issues that are associ-
ated with conventional key systems. In addition, link and end-to-
end encryption are described and contrasted. The essay’s final
topic is the integration of computer and communications secu-
rity.

Cryptography 351

What is encryption?

Encryption is a fundamental tool for the protection of sensitive infor-
mation. Its historical purpose is privacy (preventing disclosure or confi-
dentiality in communications. Encryption is a way of talking to someone
while other people are listening, but such that the other people cannot
understand what you are saying. It can also be used to protect data in
storage as well as to detect active attacks, such as message or file modi-
fication.

We refer to encryption as a tool because it is a means for achieving an
end; it is not an end in itself. Cryptography, hidden writing, is a method
for transforming the representation (appearance) of information without
changing its information content. Plaintext (cleartext) is one represen-
tation of the information expressed in natural language, intelligible to
all. Ciphertext is a different representation, designed to conceal the in-
formation from unauthorized persons. Encryption (or encipherment) is
the transformation from cleartext to ciphertext. Decryption (or deci-
pherment) is the reverse transformation.

History. Since the time of Julius Caesar and even before, people have
protected the privacy of their communications by cryptography. Things
are still that way, and yet everything is quite different. People continue
to use cryptography, though far more sophisticated than Caesar’s, to
protect their vital information as it passes through possibly hostile envi-
ronments. Rather than crossing a few hills on its way to Rome, their
data is moving from one point in the space-time continuum to another.
Messages and documents created at one place are delivered at a later
time at some distant place. When transmission of messages and docu-
ments is by electronic means, delivery is at essentially the same time
but at a different place. A file created on a computer can be recovered at
the same place but at a later time or, if it is copied onto a diskette, at
some other place and at some later time.

Historically, cryptography has been used chiefly in communications. Its
application in data retrieval is a far more recent occurrence. We shall
tend to use the language of communications in describing cryptographic
mechanisms, but the reader should keep the other examples in mind as
well. The physical security and/or the access control mechanisms,
whether they are on communications links, on network nodes and
switches, on mainframes, file servers, and PCs, or on diskettes in transit,
may not be sufficient to assure the confidentiality and the integrity of the
data that passes through them. Cryptographic mechanisms are available
that go far in establishing assurance in all these environments.

The word cryptography and the associated word cryptology have very
similar etymological origins. They are derived from the Greek words krip-
tos, which means “hidden”; graphos, which translates to “writing”; and

352 Information Security

logos, which is “word” or “speech.” In current usage, however, they have
slightly different meanings. Cryptography is the science of hiding infor-
mation. Encryption, sometimes called encipherment, is the act of con-
cealing the meaning of a message. Decryption or decipherment is the
inverse process of returning it to its original form. Any other, unauthor-
ized method of recovering the original message is known as cryptanaly-
sis or “breaking” the message. Cryptanalysis is the combination of
science, art, and luck used to break messages or entire systems. The
word cryptology nowadays refers to the study of both cryptography and
cryptanalysis. When designing a strong cryptographic system, it is neces-
sary to consider all possible attacks. In this essay, however, we discuss
cryptography only. We include only such references to cryptanalysis that
aid the reader in better understanding the strength of a particular cryp-
tosystem.

Acknowledgments. In developing the perspectives for the history,
types of attacks, encryption function standardization, and related topics
for this essay, review assistance was provided by Shimshon Berkovits
and H. William Neugent. Their comments and insights have been useful
in balancing the presentation of cryptographic issues. If there are any
omissions or misinterpretations in this essay, they are the authors’ re-
sponsibility.

What is a cryptosystem?

A historical example. As a starting point for our description of what
is cryptography, let us return to Julius Caesar. His scheme can encrypt
any sequence of characters from the Roman or any other alphabet. His
technique requires rotating the alphabet three positions to the right.
Thus, each letter of the message is replaced by the one that occurs
three places later in the alphabet. To decrypt, rotate the alphabet three
positions to the left; that is, replace every letter in the encrypted mes-
sage by the one that occurs three places to its left in the alphabet.

This is the basis for a class of ciphers known as Caesar ciphers. There
is no great significance attached to the number three. Rotate the al-
phabet right k places to encrypt and k places left to decrypt. It is only
necessary that both the sender and the receiver know the value of k.
The k is called the key. For the single pair of encryption and decryption
algorithms used in Caesar ciphers, different values of the key k will have
different effects. The key can be changed once a month, once a day, or
even for each message. There are even cipher systems that change the
value of k for each character in the message. The sequence values for k
can be randomly chosen, in which case the entire sequence is the key.
The sequence can be generated by a pseudorandom number generator.

Cryptography 353

If we incorporate the generator into the encryption and decryption algo-
rithms, the generator’s seed value becomes the key. Alternatively, the
sequence can be derived from some preselected text, such as the jth
line of the ith page of this book or the jth line of the ith column of to-
day’s New York Times. In this case, the key is the pair i, j and the name
of the document to which they refer.

Any system of substituting an element of some ciphertext alphabet for
each character in the plaintext alphabet yields an encryption algorithm.
The key is the actual correspondence between the characters of the
ciphertext alphabet and those of the plaintext alphabet. Actually, there
is a slight difference between the encryption and decryption keys. The
encryption key tells what cipher character to use in place of each plain-
text character, much like an English-French dictionary indicates what
French word to use in place of each English word. The decryption key
indicates which plaintext character replaces each cipher character.
That corresponds to a French-English dictionary. These two keys are
not the same, but it is not difficult to derive one from the other.

These cipher systems are collectively called substitution ciphers.
Given a long enough random key sequence or a pseudorandom number
generator with a long enough cycle before it repeats its output se-
quence, such systems can encrypt long streams of plaintext characters.
When used that way, they are examples of stream ciphers; they treat
the plaintext as simply a long stream of characters.

Block ciphers have a different characteristic. Block ciphers subdivide
the plaintext message into blocks of some fixed size. Each block is then
encrypted as a whole. The simplest and oldest example of a block cipher
is a permutation cipher. It shuffles the characters in a block. In fact, it
shuffles each block in exactly the same way. One way is to break the
plaintext into blocks of size m × n. Write each block in m rows of n char-
acters. Now read the characters by columns in some preselected order.
To decrypt, write the ciphertext characters in columns in the same or-
der and read the plaintext row by row. The key, which must be known
to both sender and receiver, consists of the numbers m and n and the
sequence of the columns. For the general permutation cipher, the en-
cryption key is the size of the block and the permutation. The decryp-
tion key is the size of the block and the inverse permutation.

Product ciphers. Some very powerful encryption algorithms called
product ciphers have been produced by using combinations of substitu-
tions and permutations. In his information theory approach to cryptog-
raphy, Claude Shannon spoke of two concepts for hiding information:
“confusion” and “diffusion.” Substitutions create confusion and permu-
tations introduce diffusion.

For example, the Russian spy master Rudolf Abel used a cipher that
followed a substitution cipher with two permutations. The cipher re-

354 Information Security

placed the most frequently used letters of the Russian alphabet by sin-
gle digits and all others by pairs of digits. It was done in such a way that
there was no ambiguity on decryption how to divide the sequence of dig-
its into single and double digit letters. The sequence of digits produced
by the substitution was shuffled using a rectangular-array permutation
cipher, as we have described.

The result was modified again by another rectangular-array permuta-
tion cipher. The dimensions of the second array were different from the
first. The second cipher also featured triangular perturbations of the
array. A letter written in this cipher was instrumental in the conviction
of Abel. However, the cipher itself was so strong that it was never bro-
ken. Its workings were described to the authorities by Abel’s assistant
Reino Hayhanen when he defected.

The Data Encryption Standard (DES), about which we speak further
on, is another example of a product cipher. We generally include prod-
uct ciphers in a category referred to as conventional or symmetric key
cryptography, because the sender and receiver share the same secret
key.

A formal definition. Encryption functions take at least two inputs.
The first is the plaintext, and the other is an encryption key that is
sometimes referred to as keying material. It is useful to think of the al-
gorithm as the way the tumbler action in a lock seals access to the in-
formation. The data is protected when the safe is locked by someone
holding the key. In reality, the encryption key is information that affects
the functioning of a given encryption transformation or algorithm, just
as different tumbler settings affect the action of a single lock.

Similarly, decryption has two inputs also. They are the ciphertext and
a decryption key. Again, think of the decryption algorithm as the way
the tumblers work to open a physical lock. That lock cannot be opened
without the key that corresponds to the tumbler settings. That key
must correspond in some way to the encryption key. In fact, we are used
to having a single key to lock and to unlock a door. But, when talking of
cryptosystems, there can be a subtle difference.

Let us look at the Caesar cipher one more time. Let encryption be de-
scribed as rotation of the alphabet Ek steps to the right, where Ek is the
encryption key. Decryption can be described in one of two distinct (but
related) ways. With decryption stated as rotation of Dk steps to the left,
then Dk = Ek. But with decryption defined in the same way as encryption
(and there is some benefit in having both algorithms the same), Dk =
−Ek. The decryption key, while obviously tied to the encryption key, is
nonetheless not identical to it. This possibility that the two associated
keys are different leads to some interesting cryptosystems, as we shall
see.

Cryptography 355

A generalized representation of the encryption and decryption proc-
esses is illustrated in Figure 1.

Let

A = Alice or the sender
B = Bob or the receiver
M = Plaintext message or message
C = Ciphertext
Ek = Encryption key
Dk = Decryption key
E = Encryption function or transformation
D = Decryption function or transformation

Then

C = E (Ek, M)

One way of reading this notation is as follows: The ciphertext (C) is

produced by operating on the plaintext (M) with an encryption algorithm
(E), using the encryption key (Ek). This notation is a variation of alge-
braic notation, where the parentheses indicate the operational rela-
tionships. For example, C = E (Ek, M) uses parentheses to show that the
encryption algorithm (E) is operating on the plaintext message (M) with
a specific key (Ek).

For the cryptosystem to be of practical use, we must have

M = D(Dk, C) = D(Dk, E(Ek, M))

Figure 1. Generalized representation of encryption and decryption processes.

Conventional and public key systems. If it is easy to compute the
decryption key Dk from the encryption key Ek, as is the case in all clas-
sical substitution and permutation examples, then both keys must be
protected. Anyone who has access to either key can unlock the informa-
tion protected by them. As introduced in our discussion of product ci-

356 Information Security

phers, these cryptosystems are called symmetric key or conventional
systems.

Unintuitive as it may seem at first reading, there are schemes in which
it is computationally infeasible to derive the decryption key from the en-
cryption key. Such cryptosystems are called asymmetric, and we present
the most popular example, RSA (Rivest, Shamir, and Adleman), later in
this essay. Asymmetric systems have a useful property. One can make
the encryption key (Ek) public without fear of disclosing the decryption
key (Dk). Then anyone can encrypt a message, but only the single
holder of the decryption key can decrypt it. For this reason, asymmetric
cryptosystems are also called public key systems. The published key is
known as the public key, while the other is the private key. For certain
public key digital signature systems, encryption and decryption are inverse
functions. For these systems, it makes no difference which is performed
first. However, this symmetry does not apply to other public key digital sig-
nature systems such as ElGamal, the associated Schnorr algorithm, and
the proposed US Federal Digital Signature Standard (DSS). We use the
notation of DA for Alice’s private key and EA for her public key.

If the encryption and decryption functions of a public key cryptosystem
commute, that is M (message) = E (EA, D(DA, M)), even though decrypt-
ing first seems to make no sense, we have another useful characteristic.
Alice, who is the holder of her private key (DA), can send information
that is modified by applying her decryption algorithm using her private
key. If the recipient, Bob, knows her corresponding public key (EA), ap-
plying the encryption function to the modified information will give him
assurance of the identity of Alice. In essence, Alice has “signed” the in-
formation by first using her secret or private key, which she alone pos-
sesses. This is an example of a digital signature, of which we speak again
below. Figure 2 illustrates the process.

Figure 2. Public key cryptosystem.

Cryptography 357

The example in Figure 2 shows the plaintext or message (M) being

signed by Alice with her secret or private key (DA). After the plaintext is
signed, it is now encrypted or “sealed” with Bob’s public key (EB). Only
Bob can “open” or decrypt the ciphertext because he is the only entity
in the network to possess the secret or private key (DB) that corre-
sponds to his public key used to “seal” the message (EB). Once he has
decrypted the message, he or anyone else possessing Alice’s public key
can verify her digital signature.

Encryption function confidentiality. The functions E (encryption)
and D (decryption) may be kept secret or published, even as standards.
The choice involves questions of work factor, open or closed network
architecture, and user community. The cryptanalyst has a harder job in
breaking the system if the functions E (encryption) and D (decryption)
are kept secret. This is the approach taken for protecting national secu-
rity related data. However, even in this highly sensitive arena, it is not
the reliance on the confidentiality of the functions that protects the in-
formation. After all, there are too many known cases in which such in-
formation has been leaked or sold to “the enemy.” It is the confidentiality
of the decryption keys and the fact that they are changed on a regular
basis that are the ultimate protection of the information.

Maintaining E (encryption) and D (decryption) as secret involves proce-
dural and physical protection. If an intruder acquires a cryptographic
device, secrets may be broken by reverse engineering. Physical protec-
tion can include denial of access to the cryptographic device and auto-
matic destruction of the keys if unauthorized access is attempted.
Advances in very large scale integration (VLSI) make it possible to im-
plement the cryptographic function on a single chip that is highly resis-
tant to reverse engineering, even to the extent of self-destruction or
zeroization of the keys. Such chips can be put into service with consid-
erably less physical protection than prior technology. In the final analy-
sis, however, reverse engineering does not help recover the keys. If, at a
minimum, the key registers zeroize on an intrusion attempt, the infor-
mation they protect is still safe.

Types of attacks

Attacks and protection. Passive attacks consist of observation of in-
formation passing on a connection or residing in a file; release of mes-
sage or file content is the fundamental compromise. Active attacks
include modification, delay, reordering, duplication, and synthesis. Ac-
tive attacks, resulting in message-stream modification (MSM) or file
modification, offer three threats:

358 Information Security

• Authenticity attack. Doubt of source and delivery to intended des-
tination of a message; doubt of origin of the file or message.

• Integrity attack. Modifies information content.
• Ordering attack. Changes sequence of information arrival at des-

tination; changes order of records in file.

Communication protocols and computer operating systems generally
offer minimal protection against these threats, unless they are specifi-
cally to support secure communications. Masquerading, or spurious ini-
tiation, is an attack in which an intruder attempts to establish a
communications session by falsifying his or her identity. Encryption is
the fundamental tool for countering these attacks. Release of message
or file content and traffic analysis can be prevented; MSM (message-
stream modification), file modification, and masquerading can be de-
tected.

There are several types of attacks that can be mounted against any
cryptosystem. Some attacks attempt to recover the plaintext that corre-
sponds to some stolen ciphertext or to discover the key in which one or
more cryptograms are enciphered. Others seek to exploit weaknesses in
the system so that plaintexts or keys can readily be recovered no matter
what keys are used and how frequently they are changed. A cryptosys-
tem designer must be wary of all these attacks.

Ciphertext only. The most difficult form of attack against a system is
the ciphertext-only attack, which requires that someone has captured a
segment of ciphertext. With no other information, except possibly a
guess at the cryptogram’s context, he or she attempts to determine the
corresponding plaintext and, if possible, the key that was used. Many
classical cryptosystems are vulnerable to ciphertext-only attacks which,
given sufficient ciphertext, can be examined for evidence of the statisti-
cal properties inherent in the underlying plaintext language. Abel’s
product cipher, which combines one substitution and two permutations,
successfully prevents these statistical characteristics from filtering
through to the encrypted message.

It is always possible to begin a naive ciphertext-only attack. An in-
truder can expect that, if he or she begins exhaustively trying every pos-
sible decryption key from the space of all such keys, he or she will
eventually try the correct one. Of course, if the key space is sufficiently
large, that eventuality may not occur before the encrypted information
no longer has any value, before the intruder losses interest, or before
he or she dies of old age. Furthermore, there may be several different
plaintexts that encrypt under different keys to the stolen ciphertext.
The intruder has no way of knowing if an apparent decryption to some
message that makes sense in the given context is, in fact, the correct
decryption.

Cryptography 359

Alternatively, if the correct plaintext has no recognizable properties,
the intruder cannot differentiate it from all the other trial decryptions
he or she obtains. This situation occurs when the correct plaintext does
not consist predominantly of real words or even of printable characters,
but appears to be a random bit string such as the middle of a com-
pressed ASCII file or some other cryptographic key.

These observations lead to several fundamental principles of system
design. First and foremost, the key space must be large. The easier it is
to recognize a correct decryption among all other possible decryptions
the larger the key space should be. In the best of all worlds, the key
space is so huge that an intruder would not even consider this attack,
and the plaintext is so random that he or she could not recognize suc-
cessful decryption if he or she stumbled onto it.

A known plaintext-ciphertext pair. Sometimes, through a lucky
guess or other good fortune, an intruder has the plaintext that corre-
sponds to a segment of ciphertext. He or she then tries to discover what
key was used in the hope that other data is encrypted in the same key.
This situation is similar to the 1799 discovery in Rosetta, Egypt, of the
Rosetta stone. This basalt tablet has an inscription in Greek, Egyptian
hieroglyphic, and Demotic. The stone provided known plaintext-
ciphertext pairs that led to the decipherment of hieroglyphics.

A chosen plaintext-ciphertext pair. If an intruder can somehow ob-
tain the ciphertext associated with one or more plaintexts possessing
some special characteristics or the plaintext corresponding to cipher-
texts with certain specific patterns, his or her chances of discovering the
key may be enhanced. Consequently, the chosen plaintext-ciphertext
attack has the potential to be more dangerous than either the cipher-
text-only or the known plaintext-ciphertext attack.

Encryption function standardization

Interoperability, the ability for independently manufactured systems
and subsystems to work together, is a major driving force for standardi-
zation. Market share competition is another driving force. Encryption
standards can be used to protect information from intruders, yet permit
mutually suspicious parties, such as competitive banks engaged in elec-
tronic funds transfer, to work with each other. The Data Encryption
Standard (DES) is a well-know symmetric key encryption standard. The
CCITT X.509 Secure Directory Service is a standard that includes the
use of public key cryptography for certificates, which use a digital signature
process. DES can be used for an encryption algorithm to provide for con-
fidentiality in conjunction with a system based on CCITT X.509. For ex-
ample, the Internet Privacy Enhanced Mail (PEM), which is discussed in

360 Information Security

Essay 17, uses two algorithms, RSA and DES, and a variation of CCITT
X.509.

CCITT X.509 is one of several CCITT standards that pertain to secure
international networking. For example, CCITT X.400 pertains to Mes-
sage Handling Services and does not assume the directory service.
CCITT X.500 defines the use of certificates for Directory Service, and
X.509 defines Secure Directory Service.

In addition to the standardization of encryption functions, there are
international requirements for the registration of cryptographic algo-
rithms. For example, the organizations that use nonpublic algorithms
for secret messages may wish to identify these algorithms by neutral
identifiers. Certain evolving protocols could be used to support this type
of communication need. The Secure Protocol (SP) 4 at the Transport
Layer is such a protocol, and it is being considered by ISO (International
Organization for Standardization). ISO is also working to facilitate the
registration of cryptographic algorithms.

The data encryption standard

Background. The United States National Institute of Standards and
Technology (NIST, formerly National Bureau of Standards) established
the Data Encryption Standard (DES) in 1977 as the federal standard en-
cryption algorithm, following a public solicitation for suggested algo-
rithms. The Data Encryption Algorithm (DEA), the algorithm in DES, was
derived from a design submitted by IBM. DES is an example of conven-
tional cryptography, because the sender (Alice) and the receiver (Bob)
share the same secret key. The standards are:

• Federal Information Processing Standards (FIPS). Data Encryption
Standard (DES), Publication (FIPS PUB) 46-1 (recertified until 1992,
under review for recertification for another five years) and ISO
standard IS 8372.

• American National Standards Institute (ANSI). Data Encryption Al-
gorithm (DEA), X3.92-1981, and Model of Operation of the DEA,
X3.106-1983.

DES is designated for non-national-security applications such as elec-
tronic funds transfer (EFT). In the late 1970s, several cryptographic
authorities commented that DES may become inadequate in 10 years.
However, DES has been reaffirmed over the years by NIST.

Recent information, however, has added new knowledge to the DES
story. For example, the New York Times reported that DES is much
stronger than people had thought. Adi Shamir and E. Biham had found
an attack on DES that was initially reported as breaking DES, but that

Cryptography 361

actually is only a “slight improvement over laboriously trying every key.”
Shamir said that DES is “the strongest possible code of its kind.” He said
that his attack method “devastates similar codes,” while only slightly
denting DES.

DES technology. The Data Encryption Standard (DES) is formed as a
product of substitutions and permutations. It is a block cipher using a
64-bit block. The key consists of a 56-bit block, padded by eight parity
bits, one for each byte. DES encryption begins with a 64-bit permuta-
tion. It ends with the inverse of that permutation. In between are 16
rounds of confusion and diffusion. The message block is split into two
32-bit halves. The old right half becomes the new left half. The right
half is also replaced by using a number of small substitution ciphers.
First, it is combined with 32 bits selected from the key and permuted.
Then each group of four bits is replaced by a different four bits. For each
group of four, there are four different substitution ciphers to be used.
The choice for each group is determined by the first and last bit of the
group, each combined with a different specified bit of the key. Decryp-
tion begins with the same initial permutation and ends with its inverse.
In between, decryption goes through exactly the same rounds as en-
cryption, with only one minor modification. The key bits are used in the
reverse order.

Although each step in the Data Encryption Standard is a simple sub-
stitution, permutation, or exclusive OR operation, the total result is so
complicated that an attempt to express a single ciphertext bit as a logi-
cal combination of the 64-bit block of plaintext and 56-bit key resulted
in a computer printout that was several inches thick.

The strength of DES. The DES algorithm is well publicized and has
withstood intensive attempts of many people the world over, who have
tried and are trying to break it. Even though none of these efforts has
yet succeeded, considerable insight into the inner workings of this and
similar algorithms has been developed. At the time of writing, NIST has
reaffirmed DES in hardware and certified software implementation of
DES.

From the beginning, a major criticism of the DES has been the fact
that each key has only 56 bits. That makes a key space of only 256 or
about 7.2 × 1016 different keys. The first attack ever suggested against
DES was an exhaustive, known plaintext-ciphertext search. It exploited
the size of the key space as well as the relation between EXCLUSIVE OR
and bitwise complementation. Through a clever trade of time and mem-
ory, it searched for the key that encrypted a stolen DES cryptogram. At
the time, it was estimated that within 10 years a special-purpose device
could be built to do all the needed encryptions in a reasonable time and
at a reasonable cost. No such machine has been announced, but it be-

362 Information Security

comes more feasible with every improvement of microchip efficiency and
price.

As mentioned, recent attacks on DES by Biham and Shamir [BIHA90]
have shed new light on the inherent strength of DES. Their analysis is a
variation on the chosen plaintext theme. Their approach, which they
call Differential Cryptanalysis, collects many different plaintexts and
their ciphertexts. It catalogs differences in the plaintexts and collects
statistics on the differences in the corresponding ciphertexts. Then,
given a known plaintext-ciphertext pair, they find the most likely key
used in encrypting that pair. The known plaintext-ciphertext pair is
conceptually similar to the pairs on the Rosetta stone. They have
gradually developed their attack that now it threatens a full 16-round
DES. However, the time currently required to complete a successful at-
tack is, at this writing, no better than exhaustive search.

The volume of data that must first be collected and the time needed
to complete an actual attack against a single DES key do not yet seem
to justify the death knell that has been sounded for the standard in re-
cent newspaper articles. Currently, Differential Cryptanalysis is an at-
tack only against Electronic Code Book, the simplest mode of use
included in the standard. It is possible that similar approaches are pos-
sible and will be developed for the other three modes (described below).
It is also likely that the authors of this attack will push its development
further in the hope of making it a meaningful threat.

Modes of operation

The Data Encryption Standard includes a set of standard modes of op-
eration [NIST80]. These and one or two others are appropriate for use
with any block cipher — that is, with any encryption algorithm that acts
on a fixed-size plaintext block. Each mode possesses different character-
istics that are important in different situations. We describe them
briefly.

Electronic Code Book (ECB). The Electronic Code Book mode in-
volves simple block encryption of a message or a file. The process is il-
lustrated in Figure 3. The data is broken into blocks of a standard size.
Each block in turn is the input to the encryption algorithm. The output
blocks comprise the ciphertext message or file. For decryption, that mes-
sage or file is again divided into blocks, and each block is decrypted indi-
vidually. The resulting output blocks are concatenated to reconstruct
the plaintext message or file. If an error occurs in a single ciphertext
block, the decryption of only that block will be corrupted.

Electronic Code Book has a major disadvantage. A single block that
appears several times in the plaintext stream will be encrypted in the
same way each time. Suppose the plaintext is a file of sensitive informa-

Cryptography 363

tion in a database system. If each field in some record forms a single
block, an intruder can browse cryptographically. While he or she may
not know what the individual entries in each field are, he or she can
identify which records have the same value in any specific field. Any side
information about the meaning of a single encrypted field entry may give
him or her similar knowledge about many other similarly encrypted en-
tries.

The remaining modes of operation use the context of each plaintext
block to modify how it is encrypted. Therefore, ECB is generally used for
low-volume operations, such as encrypting master keys for transmission.

Figure 3. Electronic Code Book mode of DES.

364 Information Security

Cipher Block Chaining (CBC). Cipher Block Chaining (CBC) is one
way to change the encryption of plaintext blocks that repeat. CBC in-
volves the EXCLUSIVE OR (XOR) of every plaintext block with the pre-
ceding ciphertext block. The first plaintext block must be treated
differently. It is XORed with a publicly known initialization vector (IV) or
with a secret initialization vector that is distributed with the key. For
each block, the result of the XOR is the input to the encryption algo-
rithm. The output of that algorithm becomes the next block in the ci-
phertext message or file. It is also XORed with the next plaintext block
before that block is input to the algorithm. Figure 4 shows the process.

Cryptography 365

Figure 4. Cipher Block Chaining mode of DES.
The first ciphertext block is passed through the decryption algorithm,

and the output is XORed with the initialization vector. The result is the
first plaintext block. Thereafter, each ciphertext block is passed through
the decryption algorithm. The output block is XORed with the preceding
ciphertext block. The result is the next plaintext block. If a single ci-
phertext block contains an error, neither the corresponding plaintext
block nor the next one will be recovered correctly. However, even in the
face of errors, as soon as two ciphertext blocks are error free, the de-
cryption is again successful. Such a scheme is called self-synchronizing.

It is apparent that Cipher Block Chaining does solve the cryptographic
browsing problem. Records with the same plaintext value in a particular
field will not be identifiable because each value will be encrypted using
the presumably different ciphertext in the preceding field. Anyone with
authorized read or write access to that field in those records can still
decrypt correctly. He or she needs only the encrypted value in the pre-
ceding field. However, if he or she changes the value in that field, the
entire file must be re-encrypted from that point on.

Cipher Block Chaining has another attraction. It can be readily used
to create a message or file digest. Encrypt the data using this mode and
save only the last ciphertext block as the digest. Then append the di-
gest to the message or file. Anyone who reads it can, if he or she knows
the correct key, recompute the digest. If it matches the one that came
with the unencrypted message or file, he or she knows that, with very
high probability, the data was not changed. He or she also knows that
the message or file originated with the only other person who holds the
same key. Thus, he or she has both message authentication and origin
authentication. We shall see other cryptographic techniques that yield
similar assurances.

Output and cipher feedback modes (OFB and CFB). Output and ci-
pher feedback modes (OFB and CFB) can be illustrated by the US De-
partment of Defense (DoD) Key Auto-Key or KAK and Ciphertext Auto-
Key or CTAK, respectively. Before introducing these examples, we intro-
duce applicable issues pertaining to stream ciphers, length of keys, and
initialization vectors (IVs).

Stream ciphers all have the property that they attempt to integrate
context into the encryption. The key is a long bit stream that is to be
combined, through an XOR or some other operation, with the plaintext

366 Information Security

stream. What position a particular data segment takes in the plaintext
stream determines with which segment of the key stream it will be com-
bined. If the data segment repeats itself, its different occurrences will
most likely be encrypted with different key stream segments. They will
be encrypted differently.

The key can be either a long, completely random bit stream that must
be delivered to both the encrypting and the decrypting stations, or a
pseudorandom bit stream that is generated as needed. In the latter
case, the authors prefer to reserve the word “key” for the pseudorandom
seed and to refer to the pseudorandom bit stream that is generated as
the “key stream.” It should be noted that, if a pseudorandom generator
is used, it must be cryptographically strong. That means it must not be
possible predict the rest of the key stream even if some keys are discov-
ered or guessed, as it might occur in a known plaintext-ciphertext at-
tack.

One way to create cryptographically strong, pseudorandom bit streams
is to use a block cipher like DES. Some fixed number of bits from the
output block are added to the key stream on each iteration. The input
to the block encryption algorithm is a shift register or a counter. In the
latter case, the register is loaded with an initial value and incremented
once after each encryption. The decryptor must start his or her counter
at the same initial value. As long as he or she stays in synchronization,
he or she will decrypt correctly.

If the input is a shift register, it must be loaded with an initialization
vector. After each iteration, the register contents are shifted the same
number of bits that are added to the key stream from the block encryp-
tor output. The same number of bits are shifted in to fill the empty
space in the register. They can be the same bits taken from block en-
cryptor output. In that case, we have Output Feed Back (OFB) mode,
which is used in the US DoD Key Auto-Key (KAK). Alternatively, they
can be the last bits encrypted. This is Cipher Feed Back (CFB) mode,
which is known in DoD as Ciphertext Auto-Key (CTAK). At the decryp-
tor, exactly the same procedure is followed with the block algorithm
used to encrypt. Now the key stream is combined with the ciphertext
stream to recover the plaintext stream, and the ciphertext bits must be
saved for use as feedback.

The reader is encouraged to consider what happens if errors occur in
the ciphertext stream. Both OFB and CFB are self-synchronizing. There
are, however, situations in which this property is undesirable. If it is
most important to flag where a ciphertext stream has been tampered
with, it is better to feed back plaintext bits. Then errors introduced into
the ciphertext stream cause errors in the plaintext, which are shifted
into the input register of the block encryptor. This causes an erroneous
output which, in turn, yields an incorrect decryption. The wrong plain-
text bits are again fed into the shift register and all decryption is incor-

Cryptography 367

rect from the point of the ciphertext error on. This is a very strong indi-
cation that the ciphertext has been modified, either accidentally or ma-
liciously.

Perfect confidentiality

Perfect confidentiality can be achieved with a completely random key
stream. For such an encryption mechanism, our distinction between key
and key stream disappears. The key stream is the key. It must be as long
as the message it is to encrypt. Although a courier with a large magnetic
tape containing the random bit stream forms a communication channel
with a large capacity, this encryption scheme seems somewhat un-
wieldy. Nonetheless, it does have a very important characteristic to rec-
ommend it for use in certain situations.

Because the keys are completely random, it is possible to find a candi-
date key stream that decrypts a given intercepted ciphertext message
into any plaintext message of the same length. A cryptanalyst has no
way of determining which is the right key and which is the right plain-
text. Thus, there is one key that decrypts IPOOEHWLRCR as
ILOVEMOTHER; another that yields IHATEMOTHER; a third that pro-
duces ATTACKATTWO; and one more that generates DONOTATTACK.
The cryptanalyst has no way of determining which is the correct decryp-
tion. Stated another way, all decryptions are equally likely. In general, it
is impossible for anyone who captures the ciphertext stream to deter-
mine statistically that one plaintext stream is more likely than any
other. Even if he or she can guess a likely word in the plaintext, he or
she cannot determine where to place it or what the remainder of the
message might be. Perfect confidentiality occurs because no amount of
analysis, and not even an exhaustive search were he or she to try it,
will help the intruder guess the plaintext. This cryptosystem is un-
breakable.

A stream cipher with a completely random key stream is called a one-
time pad. It derives its name from the keypad that its users once em-
ployed and from the fact that any use of a key stream more than once
can be disastrous. If the key stream is reused, the difference between
the two ciphertext streams is the same as the difference between the
two plaintext streams, the key stream canceling. Now an analyst who
looks at the differences between the statistically most common letters
in the alphabet will yield a breaking of both plaintexts. The one-time
pad is the only kind of cryptosystem that exhibits perfect confidentiality.
As such, it is often used for the most important of diplomatic correspon-
dences. For everyday transmissions of lower priority between the many
users of a communications network or the many files to be protected on
sensitive databases, something less demanding in key handling is re-
quired. A block cipher, such as DES, in one of the feedback modes or a

368 Information Security

key stream with some other cryptographically strong pseudorandom bit
stream generator is an approximation to a stream cipher with a com-
pletely random key stream.

All strive to achieve some form of computational security. This means
that, given the computing resources available to a prospective intruder,
it is very unlikely that he or she will be able to break a single crypto-
gram. In evaluating the computational security of a system, we must ex-
amine the computational time and resources required for each possible
attack compared with legitimate decryption. This is the work factor as-
sociated with each attack.

Some estimate of the intruder’s computing power and technology is
also necessary. An intruder can compare his or her capability for attack
with the potential value of the sensitive data he or she is trying to steal.
That value can be measured in dollars, in time, or in intelligence. Unfor-
tunately, the last metric is somewhat difficult to quantify. If, given the
size of the work factor, the cost of the computational power needed to
mount each attack exceeds the value of the information we are protect-
ing, our system is computationally secure.

Public key cryptography1

Public key two-key cryptosystems may be considered to be supplemen-
tary to conventional cryptography, such as DES. Diffie and Hellman first
envisioned a cryptosystem in which decryption keys cannot be derived
from the corresponding encryption keys. Three public key systems that
have been widely implemented are RSA (Rivest, Shamir and Adleman),
ElGamal, and the Diffie-Hellman key exchange system. We use the RSA
system as the main example for this discussion, because it is the most
widely adopted by industry and the international standards community.

As mentioned, the important difference is that public key cryptography
uses matched pairs of keys. For example, Alice has one for encryption
(EA) and one for decryption (DA). The encryption key is called the public
key and the decryption key is called the private key. One entity is re-
sponsible for each matched pair. The strength of the public key process is
twofold. First, the public key (Ek) can be electronically published in a
network directory for wide access. Second, anyone (for example, Alice) in
a network system can send a secret message to the holder of the private
key (for example, Bob) by using the public encryption key of the recipi-
ent (EB).

Public key cryptography can provide secure key management or key ex-
change functions to transmit secret conventional keys to the receiver

1The presentation on public key cryptography is adapted, in part, from
[NECH91].

Cryptography 369

(Bob) or perform an equivalent operation. This process supports mes-
sage privacy because the secret key, such a DES key, is transmitted with
the protection of a public key algorithm. Message privacy is achieved using
the conventional secret key to encrypt one or more messages between
the sender (Alice) and the receiver (Bob). We discuss these and related
issues in the subsequent sections.

RSA uses a pair of parameters consisting of a public exponent and an
arithmetic modulus. Briefly, the plaintext M (message) is represented as
a sequence of bits by using some encoding scheme. The sequence is
then divided into blocks X of the largest length that can be interpreted
as the binary expansion of a number less than the modulus n. Encryp-
tion then produces numbers Y of the same binary length. The relation-
ships are as follows:

n = Arithmetic modulus
e = Public exponent
d = Secret exponent
Y = Xe mod n (0 < X < n)
X = Yd mod n (0 < Y < n)
X, Y = Data blocks that are arithmetically less than the modulus

The modulus n is chosen to be the product of two sufficiently large

prime numbers p and q : n = p × q. The value of n and e together form
the public key; d and the two prime numbers — p and q — constitute the
private key.

The exponents are chosen so that

e × d = 1 mod (p − 1)(q − 1)

A key length of between 512 to 1,024 bits is generally recommended

for RSA, as compared with 56 bits for DES (plus 8 parity bits). For ap-
proximation purposes, we can say that the strength of the RSA using a
key length of 512 bits is generally comparable to a key length of 56 bits
for DES. One reason for the general comparability of such different key
lengths is that the computational processes differ substantially. An at-
tack or cryptanalysis against RSA is considered, in part, to be a function
of the difficulty to factor large numbers. Therefore, RSA is generally as-
sociated with large keys. The strength of DES is considered, in part, to
be a function of the number of computational rounds in its algorithm
(16 rounds). These 16 rounds, when coupled with a key length of 56
bits, are claimed to provide adequate resistance to attack.

Message confidentiality and authenticity. Message confidentiality
can be supported by the transformations of public key systems that have
the relationship D(E (M)) = M. The notation D(E (M)) = M refers to the

370 Information Security

decryption of the ciphertext C = E (M), which yields the plaintext mes-
sage M. The ciphertext is created by E (M) or encrypting the plaintext M.
We designate the sender A as Alice and the receiver B as Bob.

For example, if Alice (A) wishes to send a secure or private message M
to Bob (B), then Alice must have access to EB (Bob’s public key). We de-
note the common encryption algorithm using Bob’s public key as EB and
the common decryption algorithm with his private key as DB. The nota-
tion for this discussion of public key cryptography uses subscripts to refer
to the sender (Alice) and the receiver (Bob) rather than keys. For exam-
ple, we say that Alice encrypts the message M with Bob’s public key
(EB). In other words, Alice encrypts M (the message) by creating cipher-
text C = EB(M) and sends C to Bob. Bob reverses the process when he
receives C by using his private transformation DB (Bob’s private key) for
decryption. This process requires that Bob computes DB(C) =
DB(EB(M)) = M. We also generally refer to this process as Bob uses his
private key (DB) to “read” the encrypted message or ciphertext C.

If Alice’s transmission is intercepted, the attacker or intruder cannot
decrypt C (the ciphertext) since Bob’s DB (Bob’s private key) is only
known by Bob. This process provides for confidentiality. We assume that
any entity in the network can access EB (Bob’s public key), because Bob
has no means of identifying the sender. Also, Alice’s transmission could
have been changed. Therefore, authenticity and integrity are not assured
in this example. However, authenticity and integrity can be provided.

Authentication of the sender (Alice) and integrity of the message (M) can
readily be satisfied by using certain public key processes. The mathe-
matical transformations in a public key system can be achieved in a vari-
ety of ways. In general, where Alice wishes to send an authenticated
message M to Bob, he is able to verify that the message was sent by Al-
ice and was not changed. Alice could use DA (Alice’s private key) to com-
pute S (signature or signed text) = DA (M) and send S to Bob. We
generally refer to this process as Alice signing her message. The signed
message is also referred to as a digital signature. Bob can use EA (Alice’s
public key) to find EA (S) = EA (DA (M)) = M. Assuming M (message) is valid
plaintext, Bob can verify that S was actually sent by Alice, and was not
changed in transit. Verification follows from the one-way nature of EA
(Alice’s public key). If a cryptanalyst or an intruder could start with a mes-
sage M, he or she could find S′ such that EA (S′) = M. The implication is
that the intruder can invert or reverse EA. However, inversion is not
computationally feasible in this public key process.

Verifying the sender’s (Alice’s) identity could be difficult if M (the mes-
sage) or any portion of M is a random string. For example, it may be diffi-
cult for Bob to determine that S is authentic and unchanged based only
on review of EA(S).

In practice, a slightly more complex procedure is generally used. Vari-
able-length long messages are uniquely reduced to fixed-length repre-

Cryptography 371

sentations by an auxiliary public hash function or algorithm H. There-
fore, Alice is actually “signing” (H (M)). This process yields a digital signa-
ture S = DA(H (M)). Alice sends her digital signature S, which is unique to a
given message M, to Bob along with M. If Alice encrypts her message M
and digital signature S = DA (H(M)) with Bob’s public key (EB), we can say
the result is a digital envelope.

Bob can compute H (M) directly when he receives a digital envelope.
First, he “opens” the envelope by decrypting it with his private key (DB).
Second, H (M) is found by using Alice’s public key to operate on her sig-
nature S — that is, EA (DA(H (M))) = H (M). Third, H(M) may be checked
against EA (S) to ensure authenticity and integrity of M. The ability of a
cryptanalyst or intruder to find a valid S′ (digital signature′) for a given M
(message) would violate the one-way nature of E . The hash function or
algorithm (H) must also be one-way. A strong hash function has the
property that it is computationally infeasible to find a message (M)
which hashes to the same digest as a given message (M ′) with H (M) =
H(M ′). A security risk is that if Bob could find M ′ with H (M ′) = H(M),
then Bob could claim that Alice sent M ′. A judge receiving M ′, H (M) and
S would reach a false conclusion.

Sending C (ciphertext) or S (digital signature) as shown above ensures
authenticity and confidentiality. Confidentiality was provided because only
Bob could “open” the digital envelope containing M and S. Bob used his
private key (DB) to open it.

If no digital envelope were used, M (the message) and S (the digital
signature) would be transmitted in the clear. An attacker or intruder
who intercepts C (ciphertext) = S = DA (Alice’s private key) (M) may have
access to EA (Alice’s public key) and could therefore compute M (mes-
sage) = EA (C). Therefore, confidentiality of M is denied.

International electronic commerce may require communication sys-
tems that provide confidentiality, authenticity, and integrity. However, in
some cases it is possible to use the same public key system for these
security services simultaneously. For example, RSA supports digital signa-
ture and confidentiality. In the authenticity/integrity-related process, D (de-
cryption) is applied to M (message) or H (M). This contrasts with applying
E (encryption) to M (message) for confidentiality. If the same public key sys-
tem is to be used in both cases, then D(E (M)) = M and E (D(M)) = M
must both hold; that is, D (decryption) and E (encryption) are inverse
functions. A requirement is that the plaintext space (the domain of E)
must be the same as the ciphertext space (the domain of D).

In practice, there are no generally available systems versatile enough
for the last usage without modification. There is only one major public
key system (RSA) that satisfies E (D(M)) = D(E (M)) = M (message). The
absence of a common domain between two users creates a technical
problem in using such a system for confidentiality and authenticity.

372 Information Security

Figure 5 illustrates a method of achieving confidentiality and authentic-
ity in a public key process. The message M is placed in a digital envelope
which is sealed with Bob’s public key (EB).

The public key process in Figure 5 is a simplified version of a process for
confidentiality and authenticity. Certain issues, such as the question of
domains, are not considered in the figure. The illustrated public key sys-
tem complies with a hash function H. This system works with any en-
cryption and any signature. They need not be related. However, the
verification for the DSS is slightly different.

Applicability and limitations. Public key algorithms are computation-
ally intensive. Therefore, confidentiality of M (the message) can be achieved
only for short Ms. The resulting slow encryption process may be referred to
as a low-bandwidth secure transmission. In contrast, conventional key al-
gorithms, such as DES, are must faster for encryption. Therefore, conven-
tional key algorithms can produce wide-bandwidth secure transmissions.

Cryptography 373

Key
C : Ciphertext
D : Decryption
E : Encryption
H : Hash function
M : Message
S : Digital signature
Note: H ′ and M ′ are recomputed H and M.

Figure 5. Using a public key process for confidentiality and authenticity.

Chip and algorithm breakthroughs will most likely continue to occur.
Therefore, we do not rule out certain near-term and long-term uses of
public key algorithms for message privacy. However, bulk encryption re-
mains the domain of conventional cryptographic systems. These systems
use fast encryption techniques such as permutations and substitutions.

The international electronic commerce process uses public key for two
major applications:

• Secure distribution of secret conventional keys, such as DES keys,
for bulk encryption.

• Digital signatures (Ss).

In electronic commerce, there is a need for confidentiality of conven-
tional decryption keys and public key private keys. There is also a need
for integrity of encryption keys, symmetric or asymmetric. For example, if
Alice can trick Bob into believing that the encryption key she sent him
(for which she has the corresponding decryption key) is that of the
president of the XYZ Corporation, then she can read any secret that
Bob is sending him. This case includes any conventional key system
used by Bob to send the president of XYZ encrypted data.

Digital signature

Authentication, nonrepudiation, and integrity checks can be supported with
a digital signature. A digital signature is similar to a written signature, how-
ever, it is stronger. For example, detection will result from any attempt
to change the message content or to forge the signature. We note that a
Message Authentication Code (MAC), as defined in ANSI X 9.9, provides
integrity protection against alteration, but does not provide nonrepudiation
because of the sharing of the conventional secret DES key. (Another
term for a MAC is a manipulation detection code, or MDC.)

A digital signature must be a function of the entire document. Changing
even a single bit should produce a different signature. A signed message
cannot be changed without detection.

374 Information Security

Public key digital signatures. The use of public key digital signatures
and supporting hash functions can provide both authentication and verifi-
cation of message integrity. Hash functions, which have been briefly in-
troduced, will be discussed further. They can also serve as cryptographic
checksums used for validating the contents of a message. Public key
schemes supporting authentication permit generation of digital signatures
algorithmically from the same key repeatedly, although the actual signa-
tures are different. Digital signatures are a function of the message and a
long-term key. Therefore, key material can be reused many times before
replacement. Hash functions also reduce the impact of the computa-
tionally intensive nature of public key algorithms.

Public key digital signatures are generally preferred for electronic com-
merce because

1. private keys can be used repeatedly for generating digital signatures
algorithmically, and

2. nonrepudiation of the sender (Alice) is inherently a part of the sys-
tem design.

Therefore, public key implementation of digital signatures is effective and
versatile.

Nonrepudiation. Nonrepudiation is the system capability that prevents a
sender (Alice) from denying that she has sent a message. The integrity of
nonrepudiation is a function of the degree of security maintained for the
sender’s (Alice’s) private key (DA) [NEED78, POPE79]. For example, Alice
could repudiate or deny sending a message if DA is compromised. De-
pending on the applicable legislation, Alice may still be held liable for
messages signed before the compromise was reported to a central
authority. Certain administrative approaches have been proposed for
incorporation into protocols. Most of these involve use of some form of
arbitrator [DEMI83]. However, certain disputes may require litigation,
because nonrepudiation is a critical business issue.

One method of supporting nonrepudiation is to use a central authority.
For example, the receiver of a message (Bob) sends a copy to the central
authority. The central authority can verify sender’s (Alice’s) signature.
This verification provides assurance that there is no report that Alice’s
private key (DA) was compromised at the time of sending. In this case,
Alice would have to rapidly report the compromise of her private key. We
must also consider the impact of the increased workload of the central
authority on the throughput of the network.

An alternate approach is to use time stamps [DENN81, MERK82]. Al-
though a network of automated arbitrators may still be required, the
system overhead is modest because the arbitrators only have time
stamp messages. A receiver (Bob) may check the validity of the sender’s

Cryptography 375

(Alice’s) private key by checking with a central authority. Bob has a de-
gree of assurance of nonrepudiation if the received message is time
stamped before the validity check. He still has to determine if a com-
promise is discovered and reported later.

Legal requirements for nonrepudiation may include a requirement that
the sender (Alice) is responsible for signing until a compromise of her
private key is reported to the central authority. Implementation of this
approach could require an on-line central authority and real-time valid-
ity checks and time stamps. In addition to peak load concentrations that
may occur at the central authority, certain requirements for a network-
wide clock should be considered. A network-wide clock has other secu-
rity vulnerabilities, such as vulnerability to forgery of time stamps
[BOOT81].

If users, such as Alice, are permitted to change their private keys, a
central authority should archive past keys to assist in resolving dis-
putes. Each industry should have a set of legal and administrative safe-
guards to maintain continuity of operations in the event of a
compromise or change of keys. For example, credit card systems have
effective legal and administrative provisions for cases of lost or stolen
credit cards.

Hash functions. Hash functions or algorithms (H) have been intro-
duced as a method of producing a fixed-length representation of a vari-
able-length message M. As mentioned, public key algorithms are
generally computationally intensive and compute more slowly than con-
ventional algorithms. Therefore, it is usually not desirable to apply a
digital signature directly to a long message. Since we also want to sign the
entire message, we need an algorithm to reduce the size of the mes-
sage. Hash functions or algorithms meet this need for computation of
digital signatures to supplement public key techniques. For example, MD
(Message Digest) 4, from R. Rivest, produces a 128-bit representation or
message digest of a variable-length message. RSA is used to encrypt this
message digest with sender’s (Alice’s) private key (DA). This becomes S =
DA(H (M)). Other hash functions that can be used include MD 5, from R.
Rivest, which essentially adds an additional computational round to MD
4.

The encrypted message digest is a digital signature that can be attached
to the message for secure transmission in a digital envelope (in this
case, containing the digital signature and the message M). As mentioned,
a digital envelope is sealed by the public key EB of the receiver, Bob.

The receiver (Bob) may validate the signature on H(M) and then apply
the public function H (hash function) directly to M (message) and verify
that it matched the received signed version of H(M). Authenticity and
integrity of M are validated simultaneously. Only integrity would be as-
sured if H(M) were unsigned.

376 Information Security

Hash functions should produce unique message digests. However, it is
theoretically possible that two distinct messages could be reduced to an
identical same message digest and cause a collision. Collisions cannot
be avoided completely because there are generally more potential mes-
sages than the number of possible message digests. In practice, the
probability of collisions should be very low. For hash functions with ran-
dom or near random output, the probability of collisions is a function of
the size of the message digest and the number of bit sequences that are
meaningful messages.

In public key cryptography, the minimum requirements for a hash func-
tion include the ability to adequately support the authentication process.
For example, if we have a message M and a message digest MD, it must
not be computationally feasible to find another message M ′ that also
reduces to MD. Therefore, forgery can be avoided because appending
the signed MD to M ′ would not verify as a valid signature.

Public key digital signature sequence. A public key digital signature proc-
ess is briefly highlighted:

1. Compute a unique fixed-length message digest MD from the mes-
sage M.

2. Use Alice’s private key (DA) to form the signature as encrypted
hash, that is, DA(H (M)) = S.

3. Attach Alice’s signature S to her message M.
4. Seal in a digital envelope M and S with Bob’s public key (EB) for

authenticity and confidentiality.
5. Bob opens the digital envelope on receipt using his private key

(DB).

Confidentiality is provided with the digital envelope, because only Bob
can open the digital envelope with his private key (DB). He validates Al-
ice’s signature S by computing H (M) = EA (S). As mentioned, Alice’s public
key (DA) is a trapdoor one-way function. Therefore, an intruder should
not be able to determine S′ such that H(M ′) = EA (S′) for a given forged
message M′. As a result of this situation, Alice’s signature cannot be
forged. Also, if Alice attempts to repudiate the message sent to Bob
above, Bob may present M (message) and S (digital signature) to a judge.
The judge can use Alice’s public key (EA) to compute H (M) = EA (S). If
Alice’s private key has been kept private, then only Alice could have
sent S. This is nonrepudiation.

To provide for nonrepudiation, Bob can use his private key to open DE
(digital envelope) = M, DA (H (M). A judge can use EA (Alice’s public key) to
operate on DA (H (M) and compare the results to H(M).

Cryptography 377

Digital signatures and certificate-based systems. Electronic commerce
requires sender authentication, data integrity, and nonrepudiation. These
three security services are achieved with the use of digital signatures in dis-
tributed open systems. Certificate-based public key systems provide effec-
tive implementation.

For example, the Internet uses certificates to make public keys avail-
able to authorized entities. These issues are discussed in Essay 17 on
Privacy Enhanced Mail (PEM). For example, PEM uses RSA and certifi-
cates derived from CCITT Recommendation X.509 for Secure Directory
[CCIT88c]. Using RSA in X.509, Bob’s (the receiver’s) public key is crypto-
graphically sealed (wrapped) in a certificate, along with other identifica-
tion information. A trusted third party, called a Certification Authority
(CA) in X.509, uses its private key (DCA) to seal the certificate. The use
of PEM and X.509 with DSS may not be exactly the same as for RSA.
The PEM protocols may need to be extended to facilitate multiple algo-
rithms.

Since X.509 provides for multiple CAs, a certification authority hierar-
chy or tree can be constructed. Authorized network entities (users) have
the applicable CA’s public key to decrypt or unseal the receiver’s (Bob’s)
certificate in a directory. It may be necessary to repeat the process for
nested certificates. The result is the receiver’s (Bob’s) public key, which
can be used to send encrypted messages to Bob that only he can de-
crypt with his private key. Certificate-based key management is another
way of describing this process. This process supports a zero knowledge
technique that is being standardized as DIS 9979.

Public key management

In public key systems, the key management problem is inherently sim-
ple and relatively low risk (compared with conventional key manage-
ment, for example, ANSI X9.17). For instance, the key information to be
exchanged between users, or between a user and a central authority, is
public. Also, a physical mail system might be satisfactory to communi-
cate with the central authority, if redundant information is sent via an
insecure (electronic) channel.

Management of public keys. We have briefly introduced the need for
Alice and Bob to exchange their public keys. One reason is that public
keys do not need privacy in storage or transit. For example, public keys
can be managed by an on-line or off-line directory service, or they can
also be exchanged directly by users.

Integrity has also been introduced. For example, if Alice thinks that the
intruder’s public key (EI) is really Bob’s public key (EB), then Alice could
possibly encrypt using EI. The result would be that I could decrypt using
DI. Integrity should also be considered, because any error in transmission

378 Information Security

of a public key could eliminate its usefulness. Therefore, error detection
is desirable.

A central authority, such as the Certification Authority (CA) that we
introduced, is generally required for electronic commerce. However,
there are situations where the CA may not have to be on-line. For ex-
ample, Alice could retain Bob’s public key for future use.

Use of certificate-based key management. We introduced certifi-
cate-based key management as a way of providing authenticity and in-
tegrity in the distribution of public keys [KOHN78]. A certificate-based
system requires a central issuing authority CA (Certification Authority in
CCITT X.509). For example, Alice will generally follow some form of identi-
fication and authentication procedure in registering with the CA. In addi-
tion, registration can be handled by a tree-structured system. In this
case, the CA provides certificates to local CAs. The local CAs can register
users at lower levels of the hierarchy.

In the general case, Alice receives a certificate signed by the CA (Certi-
fication Authority) and containing EA (Alice’s public key). The CA pre-
pares a message M containing EA, identification information for Alice, a
validity period, and so on. Her certificate is computed by the CA as
CERTA = DCA(M). A certificate is a public document that contains EA and
authenticates it. The authentication occurs because the CA signs CERTA.
As we have mentioned, certificates can be distributed by the CA or by
users. Our discussion of certificate validity can also be considered as a
generalization of time stamping.

There are exceptions to the utility of time stamping. For example, a
certificate may be compromised or withdrawn before its expiration date.
Therefore, if certificates are retained by users (rather than being re-
quested each time from the CA), the CA must periodically publish an
invalidated certificate list.

Public key and conventional key management issues

We need public key management for confidentiality of private keys and in-
tegrity of public keys. In addition, we need secure delivery for conven-
tional secret keys to assure confidentiality and integrity. In either case, if
we have a hierarchy of keys with the confidentiality and/or integrity of
each key guaranteed by some key one level up, we need the secure de-
livery of the key at the highest level in some secure channel. Public key
standards that provide for these considerations include CCITT X.509
and the Internet Privacy Enhanced Mail (PEM).

Secure delivery of certain keys, such as public keys, may involve deliv-
ery in a nonelectronic channel at the highest level of trust. For exam-
ple, some public keys may be delivered in person or by trusted courier to
a Certification Authority (CA).

Cryptography 379

The applicable standards involve, in part, using public key systems for
secure and authenticated exchange of verified identities and data-
encrypting keys between two parties. Data-encrypting keys are secret
shared keys connected with a conventional cryptographic system that
may be used for bulk data encryption. The public key approach permits
users to establish common keys for use with a system such as DES.

Conventional key systems often use a central authority for assistance
in the key management and exchange processes. Use of a public key sys-
tem permits users to establish a common secret key without the riskof a
third party having the secret key. In other words, a public key system has
a lower risk than a conventional key cryptosystem for key management
and exchange. Therefore, international standards to support the evolv-
ing open distributed processing systems include public key management
concepts.

Public key cryptography can be used to distribute conventional secret
keys securely and effectively. The overhead is modest because keys are
essentially short fixed-length messages. Also, digital signatures are gener-
ally applied only to outputs of hash functions, which are also the
equivalent of short fixed-length messages. Therefore the bandwidth
limitation of a public key cryptosystem is not a major factor for these ap-
plications.

Authentication, integrity, and key management issues
for conventional key systems

We focus in this section on issues pertaining to MAC for authentication
and integrity (X9.9) and a related standard for conventional key manage-
ment (X9.17). Digital signature is discussed in the following section.

Certain financial systems use conventional cryptography to provide for
authentication and integrity of financial messages. In this case, encryption
is performed and used to generate a MAC, which is appended to the
cleartext for transmission. The receiver (Bob) calculates the MAC and
compares the calculated and received MAC. A match ensures that the
sender (Alice) possessed the proper conventional encryption key and
that the message was undamaged. The limitation of the MAC process is
that Alice and Bob share the same secret key.

Historically, MACs have been used to provide message authentication in
financial systems. The message remains in cleartext, which may be re-
quired in certain international banking communities. One of the diffi-
culties of using MACs has been the complexity of conventional key
management. However, a standard has evolved to assist in key man-
agement for well-defined communities.

We briefly introduce two representative ANSI (American National Insti-
tute of Standards Institute) standards for wholesale banking that have
also been adopted internationally:

380 Information Security

• ANSI X9.9-1982, 1986: Financial Institution Message Authentica-
tion (Wholesale).

• ANSI X9.17-1985, 1991 (Extension): Financial Institution Key
Management (Wholesale).

It is important to note that in the interbank (wholesale) electronic funds
transfer environment the primary goal is authentication rather than pri-
vacy. Privacy can be provided only by use of an additional key.

Message Authentication Code (MAC): Standard ANSI X9.9-1982,
1986. The Message Authentication Code (MAC) (ANSI X9.9), not to be
confused with Mandatory Access Control (MAC), is a cryptographic
checksum appended to a message. It seals the message against modifi-
cation. All fields such as time, date, sources, and so on included in the
checksum are rendered unalterable. Either the entire message or se-
lected fields are processed through the algorithm using the Cipher Block
Chaining Mode (CBC). As mentioned, the last block is the only output of
the process that is used in the MAC. MAC requires a key management
protocol, such as ANSI Standard X9.17.

Financial Institution Key Management: Standard ANSI X9.17-
1985, 1991 (Extension). There are three environments in ANSI X9.17
for conventional key establishment:

• Point-to-point environment. Two parties share a master key, and the
master key is used for distribution of working keys.

• Key Distribution Center (KDC) environment. Master keys are gener-
ated by a Key Distribution Center and are shared between each
entity and the centralized server.

• Key Translation Center environment. One entity originates the
working key. (This is a minor variation on Key Distribution Cen-
ter.)

Two entities can share in the key management process in a point-to-
point environment. Each entity has the same master key that is used to
distribute working keys for individual messages. Working keys are gen-
erally changed periodically, depending on the risk associated with the
application. For example, a high-risk environment could require a new
working key for every transaction or every day.

The full implementation of this standard involves the second option,
namely, the Key Distribution Center (KDC) environment. A trusted en-
tity in the network is designated to perform the KDC functions for a de-
fined community of users. Each entity in the user community has to
establish a trusted relationship with the KDC, which has a duplicate of
each of the user’s master keys.

Cryptography 381

A Key Translation Center is used when one of the entities wishes to
perform some of the KDC functions. This entity originates the working
keys for the user community.

Risk and cost of conventional key management. The concentra-
tion of risk is a security disadvantage of conventional key management.
Risk concentration may be considered a function of the need to have
the secret keys for a network community concentrated in one node.
Also, the cost or overhead of conventional key management is relatively
high because of the need for the KDC to share all master keys. Substan-
tial complexities may occur if a large number of KDCs wish to join to-
gether in ad hoc relationships to support international electronic
commerce.

For example, if Alice and Bob wish to communicate securely, they
must first securely establish a common key. As mentioned, one possibil-
ity is to employ a third party such as a courier. Historically, couriers have
been used; however, electronic commerce requires electronic key man-
agement.

The most common approach for Alice and Bob to use in conventional
key management would be to obtain a common key from a central issu-
ing authority or a key distribution center [BRAN75]. The higher risk oc-
curs because the key distribution center is at risk to attack from an
intruder. Unfortunately, a single security breach by an intruder would
compromise the entire system. For example, the intruder could passively
eavesdrop without detection.

The higher overhead of a key distribution center occurs, in part, be-
cause of the bottleneck effect. Since each pair of users needing a key
must access a key distribution center at least once, the volume of activ-
ity would increase rapidly. If the number of users is n, then the number
of pairs of users wishing to communicate could potentially be as high as
n(n − 1)/2. In addition, each time a new secret key is needed, at least
two communications are required for the user pair and the key distribu-
tion center. Furthermore, network availability could become a function of
the key distribution system. Questions should also be asked concerning
the capability for maintaining effective access control for the system con-
taining the secret keys. Examples of systems that provide this type of
access control are security-enforcing or trusted systems.

Other aspects of conventional key management are not unique to
conventional cryptography. For example, life-cycle management is re-
quired over the life of conventional keys, which can include the need for
archiving, for example, five to 30 years for business purposes. Life-cycle
management procedures include distribution, storage, and destruction.
Key maintenance is also required. For example, some keys may be lost
or compromised. In addition, employee changes may make it necessary
to cancel some keys and issue others.

382 Information Security

Manual key distribution must occur at least once for conventional
cryptographic key management, after which automated distribution can
occur. Master keys or key-encrypting conventional keys (KEKs) are the
manually distributed keys. These keys are used only to encrypt other
conventional keys called “working keys.” Other terms for “working key”
include “data-encrypting keys” (DEKs).

An introduction to encryption in networks

We briefly discuss some network aspects of encryption. Our purpose is
to introduce some of the common terms and concepts for link and net-
work encryption. However, we do not address the encryption issues as-
sociated with communication protocols and internetworking. For some
of these issues, see Essays 17 and 18.

Relating encryption to data network communications. The in-
creased application of communication technology in international elec-
tronic commerce has accelerated the need for security in data network
communications. These communications support global interconnectiv-
ity and distributed operations, thereby introducing security risks. New
developments in communication protocols offer promise of providing so-
lutions to reduce certain security risks. A protocol specification details
the control functions that may be performed, the formats and control
codes used to communicate those functions, and the procedures that
the two entities must follow. We introduce some of the basic issues that
are useful when evaluating security services that can be satisfied with
encryption mechanisms.

Link encryption. The most straightforward application of encryption is
to the communications link. Information is not processed as it passes on
a link. There are no packet switches, no gateways or other intermediate
systems. All of the information can be encrypted to prevent release of
message contents. Traffic analysis can also be prevented by padding
(adding null or blank characters so that all messages are the same
length). Padding entails no additional cost if dedicated links are used;
the converse is true on shared links. Link encryption provides protec-
tion only on the communications link. Information in an intermediate
node reverts to plaintext. Protection of this plaintext involves physical
protection of the node hardware and trust of the node software. Natu-
rally, there are costs associated with physical protection as well as op-
eration of the encrypted links, mostly in key management and
distribution.

Link encryption is the oldest and most common form of encryption in
computer networks. In a packet-switching network, link encryption can

Cryptography 383

be used to encrypt the communication links between keys such as
hosts and switches.

A simple view of data communications is to consider the system as
composed of two pieces of equipment closely collocated. The communi-
cation path is protected and error-free, and possesses unlimited band-
width. Equipment must be added to approximate this ideal in the real
world.

Link encryption illustrated. Figure 6 shows a schematic representation
of data circuit-terminating equipment (DCE) adapting a physical circuit
to carry data communications. Figure 7 adds encryption equipment.

Figure 6. Data circuit without encryption (DTE: data terminal
equipment; DCE: data circuit-terminating equipment).

Figure 7. Data circuit with encryption (E: data encryption equipment).

Link encryption for point-to-point circuits. Link encryption is appropriate

for point-to-point circuits. In addition, it can be easily placed in the OSI
context. For example, the entire bit stream is encrypted when link en-
cryption is present at the Physical Layer, layer 1. Encryption at the Data
Link Layer, layer 2, results in some fields in plaintext and others en-
crypted.

End-to-end encryption. End-to-end encryptionencryption (E3 or E3) is
different from link encryption in that we no longer have to expose in-
formation in cleartext in packet switches — that is, at each node. The
reason for this difference is that E3 refers to encryption above the Data
Link Layer. Simple link encryption is inadequate when applied to ISO
layered protocols for wide area networks (WANs) in layers 3 to 7, be-
cause commercial WANs generally do not provide link encryption capa-
bilities among the switches.

When discussing E3 with respect to the ISO seven-layer model, we
usually refer to encryption by layer. For example, encryption in layer 3 or
4 could be called Network or Transport encryption, respectively. Certain
protocols that are being considered by ISO use more specific designa-

384 Information Security

tions, such as encryption at the top of layer 3 (SP3, Secure Protocol 3) or
the bottom of layer 4 (SP4).

Encryption must be generalized to protect the protocol data units
(PDUs) at a given layer. Extending encryption into higher protocol layers
increases the number of entities protected, at the cost of interfacing
and the overhead associated with additional hardware and/or software.
Higher layer encryption and the accompanying protocols can be intru-
sive. However, substantial hardware and software advances are being
made. Therefore, there is a gradual international trend to higher layer
encryption and encryption in commercial application software packages.

File encryption for storage protection. File encryption is the en-
cryption of a file in a computer system and/or a distributed processing
system. It gives protection in case someone breaks through electronic
system defenses and accesses the file. File encryption also enables us to
put the file on a floppy disk and mail it without any special protection.
In other words, file encryption substitutes for physical protection. The
main problem with file encryption is losing the key. Losing the key in file
encryption is like losing all our data when our hard disk crashes, except
that, with file encryption, our backup copies probably are lost as well.

A process that uses encryption to cryptographically “sign” or “seal”
software before distribution has been introduced as digital signature. The
digital signature is used to verify the integrity of the software in operation.

Integration of computer and communications security

In the past, computer security was used inside computers, and com-
munications security was used outside on the transmission lines. Today
this boundary is disappearing as file encryption, digital signatures, mes-
sage integrity, E3 or E3, password encryption, and other such applica-
tions are incorporated into computer systems. This change can
strengthen functions such as identification, authentication, and access con-
trol. However, the integration of the two disciplines will require the in-
terface of two cultures as two sets of rules are combined. This
integration is complicated by the development of internetworking, which
is bringing many technologies together, such as wired and wireless com-
munications.

This interface of the two disciplines — computer and communications
security — may require answers to systems questions. For example,
should this integration of security-enforcing or trust technology in com-
puter security (COMPUSEC) and cryptography in communications secu-
rity (COMSEC) require that the information system provide both sets of
security attributes — computer and communications security, that is,
information security (INFOSEC)? Even as we bring the two disciplines
together, we still may need well-defined interfaces and boundaries for

Cryptography 385

reasons of modularity, certification, and international electronic com-
merce.

