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Essay 15 

Cryptography 
Marshall D. Abrams and Harold J. Podell 

This essay discusses cryptographic protection of information 
confidentiality and integrity as that information passes from one 
point in space-time to another. More recent uses of cryptogra-
phy, such as authentication and nonrepudiation are also discussed. 

The essay begins with an introduction of these ideas, including 
some basic examples, then proceeds to the definition of a crypto-
graphic system, making the distinction between conventional 
key or symmetric key schemes and public key or asymmetric key 
schemes. We present some classical examples beginning with 
Julius Caesar. Both substitution and permutation ciphers are 
included, as well as a word about their weaknesses. The Data 
Encryption Standard (DES) serves as an example of a product ci-
pher whose strength derives simply from repeated applications of 
both permutations and substitutions. 

The essay then turns to public key schemes or systems. A public 
key system can be used by anyone to encrypt a message for a 
given recipient but only that recipient can decrypt it. Although 
there are many proposed in the open literature and three have 
been widely implemented, we focus on the most popular system, 
RSA. RSA (Rivest, Shamir, and Adleman) is a widely used public 
key system whose strength lies in the difficulty of factoring cer-
tain large numbers. 

A discussion of public key management is followed by an intro-
duction to public key and conventional key management issues. 
We also discuss authentication and integrity issues that are associ-
ated with conventional key systems. In addition, link and end-to-
end encryption are described and contrasted. The essay’s final 
topic is the integration of computer and communications secu-
rity. 
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What is encryption? 

Encryption is a fundamental tool for the protection of sensitive infor-
mation. Its historical purpose is privacy (preventing disclosure or confi-
dentiality in communications. Encryption is a way of talking to someone 
while other people are listening, but such that the other people cannot 
understand what you are saying. It can also be used to protect data in 
storage as well as to detect active attacks, such as message or file modi-
fication. 

We refer to encryption as a tool because it is a means for achieving an 
end; it is not an end in itself. Cryptography, hidden writing, is a method 
for transforming the representation (appearance) of information without 
changing its information content. Plaintext (cleartext) is one represen-
tation of the information expressed in natural language, intelligible to 
all. Ciphertext is a different representation, designed to conceal the in-
formation from unauthorized persons. Encryption (or encipherment) is 
the transformation from cleartext to ciphertext. Decryption (or deci-
pherment) is the reverse transformation. 

History. Since the time of Julius Caesar and even before, people have 
protected the privacy of their communications by cryptography. Things 
are still that way, and yet everything is quite different. People continue 
to use cryptography, though far more sophisticated than Caesar’s, to 
protect their vital information as it passes through possibly hostile envi-
ronments. Rather than crossing a few hills on its way to Rome, their 
data is moving from one point in the space-time continuum to another. 
Messages and documents created at one place are delivered at a later 
time at some distant place. When transmission of messages and docu-
ments is by electronic means, delivery is at essentially the same time 
but at a different place. A file created on a computer can be recovered at 
the same place but at a later time or, if it is copied onto a diskette, at 
some other place and at some later time. 

Historically, cryptography has been used chiefly in communications. Its 
application in data retrieval is a far more recent occurrence. We shall 
tend to use the language of communications in describing cryptographic 
mechanisms, but the reader should keep the other examples in mind as 
well. The physical security and/or the access control mechanisms, 
whether they are on communications links, on network nodes and 
switches, on mainframes, file servers, and PCs, or on diskettes in transit, 
may not be sufficient to assure the confidentiality and the integrity of the 
data that passes through them. Cryptographic mechanisms are available 
that go far in establishing assurance in all these environments. 

The word cryptography and the associated word cryptology have very 
similar etymological origins. They are derived from the Greek words krip-
tos, which means “hidden”; graphos, which translates to “writing”; and 
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logos, which is “word” or “speech.” In current usage, however, they have 
slightly different meanings. Cryptography is the science of hiding infor-
mation. Encryption, sometimes called encipherment, is the act of con-
cealing the meaning of a message. Decryption or decipherment is the 
inverse process of returning it to its original form. Any other, unauthor-
ized method of recovering the original message is known as cryptanaly-
sis or “breaking” the message. Cryptanalysis is the combination of 
science, art, and luck used to break messages or entire systems. The 
word cryptology nowadays refers to the study of both cryptography and 
cryptanalysis. When designing a strong cryptographic system, it is neces-
sary to consider all possible attacks. In this essay, however, we discuss 
cryptography only. We include only such references to cryptanalysis that 
aid the reader in better understanding the strength of a particular cryp-
tosystem. 

Acknowledgments. In developing the perspectives for the history, 
types of attacks, encryption function standardization, and related topics 
for this essay, review assistance was provided by Shimshon Berkovits 
and H. William Neugent. Their comments and insights have been useful 
in balancing the presentation of cryptographic issues. If there are any 
omissions or misinterpretations in this essay, they are the authors’ re-
sponsibility. 

What is a cryptosystem? 

A historical example. As a starting point for our description of what 
is cryptography, let us return to Julius Caesar. His scheme can encrypt 
any sequence of characters from the Roman or any other alphabet. His 
technique requires rotating the alphabet three positions to the right. 
Thus, each letter of the message is replaced by the one that occurs 
three places later in the alphabet. To decrypt, rotate the alphabet three 
positions to the left; that is, replace every letter in the encrypted mes-
sage by the one that occurs three places to its left in the alphabet. 

This is the basis for a class of ciphers known as Caesar ciphers. There 
is no great significance attached to the number three. Rotate the al-
phabet right k places to encrypt and k places left to decrypt. It is only 
necessary that both the sender and the receiver know the value of k. 
The k is called the key. For the single pair of encryption and decryption 
algorithms used in Caesar ciphers, different values of the key k will have 
different effects. The key can be changed once a month, once a day, or 
even for each message. There are even cipher systems that change the 
value of k for each character in the message. The sequence values for k 
can be randomly chosen, in which case the entire sequence is the key. 
The sequence can be generated by a pseudorandom number generator. 
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If we incorporate the generator into the encryption and decryption algo-
rithms, the generator’s seed value becomes the key. Alternatively, the 
sequence can be derived from some preselected text, such as the jth 
line of the ith page of this book or the jth line of the ith column of to-
day’s New York Times. In this case, the key is the pair i, j and the name 
of the document to which they refer. 

Any system of substituting an element of some ciphertext alphabet for 
each character in the plaintext alphabet yields an encryption algorithm. 
The key is the actual correspondence between the characters of the 
ciphertext alphabet and those of the plaintext alphabet. Actually, there 
is a slight difference between the encryption and decryption keys. The 
encryption key tells what cipher character to use in place of each plain-
text character, much like an English-French dictionary indicates what 
French word to use in place of each English word. The decryption key 
indicates which plaintext character replaces each cipher character. 
That corresponds to a French-English dictionary. These two keys are 
not the same, but it is not difficult to derive one from the other. 

These cipher systems are collectively called substitution ciphers. 
Given a long enough random key sequence or a pseudorandom number 
generator with a long enough cycle before it repeats its output se-
quence, such systems can encrypt long streams of plaintext characters. 
When used that way, they are examples of stream ciphers; they treat 
the plaintext as simply a long stream of characters. 

Block ciphers have a different characteristic. Block ciphers subdivide 
the plaintext message into blocks of some fixed size. Each block is then 
encrypted as a whole. The simplest and oldest example of a block cipher 
is a permutation cipher. It shuffles the characters in a block. In fact, it 
shuffles each block in exactly the same way. One way is to break the 
plaintext into blocks of size m × n. Write each block in m rows of n char-
acters. Now read the characters by columns in some preselected order. 
To decrypt, write the ciphertext characters in columns in the same or-
der and read the plaintext row by row. The key, which must be known 
to both sender and receiver, consists of the numbers m and n and the 
sequence of the columns. For the general permutation cipher, the en-
cryption key is the size of the block and the permutation. The decryp-
tion key is the size of the block and the inverse permutation. 

Product ciphers. Some very powerful encryption algorithms called 
product ciphers have been produced by using combinations of substitu-
tions and permutations. In his information theory approach to cryptog-
raphy, Claude Shannon spoke of two concepts for hiding information: 
“confusion” and “diffusion.” Substitutions create confusion and permu-
tations introduce diffusion. 

For example, the Russian spy master Rudolf Abel used a cipher that 
followed a substitution cipher with two permutations. The cipher re-
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placed the most frequently used letters of the Russian alphabet by sin-
gle digits and all others by pairs of digits. It was done in such a way that 
there was no ambiguity on decryption how to divide the sequence of dig-
its into single and double digit letters. The sequence of digits produced 
by the substitution was shuffled using a rectangular-array permutation 
cipher, as we have described. 

The result was modified again by another rectangular-array permuta-
tion cipher. The dimensions of the second array were different from the 
first. The second cipher also featured triangular perturbations of the 
array. A letter written in this cipher was instrumental in the conviction 
of Abel. However, the cipher itself was so strong that it was never bro-
ken. Its workings were described to the authorities by Abel’s assistant 
Reino Hayhanen when he defected. 

The Data Encryption Standard (DES), about which we speak further 
on, is another example of a product cipher. We generally include prod-
uct ciphers in a category referred to as conventional or symmetric key 
cryptography, because the sender and receiver share the same secret 
key. 

A formal definition. Encryption functions take at least two inputs. 
The first is the plaintext, and the other is an encryption key that is 
sometimes referred to as keying material. It is useful to think of the al-
gorithm as the way the tumbler action in a lock seals access to the in-
formation. The data is protected when the safe is locked by someone 
holding the key. In reality, the encryption key is information that affects 
the functioning of a given encryption transformation or algorithm, just 
as different tumbler settings affect the action of a single lock. 

Similarly, decryption has two inputs also. They are the ciphertext and 
a decryption key. Again, think of the decryption algorithm as the way 
the tumblers work to open a physical lock. That lock cannot be opened 
without the key that corresponds to the tumbler settings. That key 
must correspond in some way to the encryption key. In fact, we are used 
to having a single key to lock and to unlock a door. But, when talking of 
cryptosystems, there can be a subtle difference. 

Let us look at the Caesar cipher one more time. Let encryption be de-
scribed as rotation of the alphabet Ek steps to the right, where Ek is the 
encryption key. Decryption can be described in one of two distinct (but 
related) ways. With decryption stated as rotation of Dk steps to the left, 
then Dk = Ek. But with decryption defined in the same way as encryption 
(and there is some benefit in having both algorithms the same), Dk = 
−Ek. The decryption key, while obviously tied to the encryption key, is 
nonetheless not identical to it. This possibility that the two associated 
keys are different leads to some interesting cryptosystems, as we shall 
see. 
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A generalized representation of the encryption and decryption proc-
esses is illustrated in Figure 1. 

 
Let 
 
A  =  Alice or the sender 
B  =  Bob or the receiver 
M  =  Plaintext message or message 
C  =  Ciphertext 
Ek =  Encryption key 
Dk =  Decryption key 
E  =  Encryption function or transformation 
D  =  Decryption function or transformation 
 
Then 
 
C  =  E (Ek, M ) 
 
One way of reading this notation is as follows: The ciphertext (C) is 

produced by operating on the plaintext (M) with an encryption algorithm 
(E ), using the encryption key (Ek). This notation is a variation of alge-
braic notation, where the parentheses indicate the operational rela-
tionships. For example, C = E (Ek, M ) uses parentheses to show that the 
encryption algorithm (E ) is operating on the plaintext message (M ) with 
a specific key (Ek). 

For the cryptosystem to be of practical use, we must have 
 
M = D(Dk, C) = D(Dk, E(Ek, M ) ) 
 
 
 
 
 
 
 
 
Figure 1. Generalized representation of encryption and decryption processes. 

 

Conventional and public key systems. If it is easy to compute the 
decryption key Dk from the encryption key Ek, as is the case in all clas-
sical substitution and permutation examples, then both keys must be 
protected. Anyone who has access to either key can unlock the informa-
tion protected by them. As introduced in our discussion of product ci-
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phers, these cryptosystems are called symmetric key or conventional 
systems. 

Unintuitive as it may seem at first reading, there are schemes in which 
it is computationally infeasible to derive the decryption key from the en-
cryption key. Such cryptosystems are called asymmetric, and we present 
the most popular example, RSA (Rivest, Shamir, and Adleman), later in 
this essay. Asymmetric systems have a useful property. One can make 
the encryption key (Ek) public without fear of disclosing the decryption 
key (Dk). Then anyone can encrypt a message, but only the single 
holder of the decryption key can decrypt it. For this reason, asymmetric 
cryptosystems are also called public key systems. The published key is 
known as the public key, while the other is the private key. For certain 
public key digital signature systems, encryption and decryption are inverse 
functions. For these systems, it makes no difference which is performed 
first. However, this symmetry does not apply to other public key digital sig-
nature systems such as ElGamal, the associated Schnorr algorithm, and 
the proposed US Federal Digital Signature Standard (DSS). We use the 
notation of DA for Alice’s private key and EA for her public key. 

If the encryption and decryption functions of a public key cryptosystem 
commute, that is M (message) = E (EA, D(DA, M ) ), even though decrypt-
ing first seems to make no sense, we have another useful characteristic. 
Alice, who is the holder of her private key (DA ), can send information 
that is modified by applying her decryption algorithm using her private 
key. If the recipient, Bob, knows her corresponding public key (EA ), ap-
plying the encryption function to the modified information will give him 
assurance of the identity of Alice. In essence, Alice has “signed” the in-
formation by first using her secret or private key, which she alone pos-
sesses. This is an example of a digital signature, of which we speak again 
below. Figure 2 illustrates the process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Public key cryptosystem. 
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The example in Figure 2 shows the plaintext or message (M) being 

signed by Alice with her secret or private key (DA ). After the plaintext is 
signed, it is now encrypted or “sealed” with Bob’s public key (EB). Only 
Bob can “open” or decrypt the ciphertext because he is the only entity 
in the network to possess the secret or private key (DB) that corre-
sponds to his public key used to “seal” the message (EB ). Once he has 
decrypted the message, he or anyone else possessing Alice’s public key 
can verify her digital signature. 

Encryption function confidentiality. The functions E (encryption) 
and D (decryption) may be kept secret or published, even as standards. 
The choice involves questions of work factor, open or closed network 
architecture, and user community. The cryptanalyst has a harder job in 
breaking the system if the functions E (encryption) and D (decryption) 
are kept secret. This is the approach taken for protecting national secu-
rity related data. However, even in this highly sensitive arena, it is not 
the reliance on the confidentiality of the functions that protects the in-
formation. After all, there are too many known cases in which such in-
formation has been leaked or sold to “the enemy.” It is the confidentiality 
of the decryption keys and the fact that they are changed on a regular 
basis that are the ultimate protection of the information. 

Maintaining E (encryption) and D (decryption) as secret involves proce-
dural and physical protection. If an intruder acquires a cryptographic 
device, secrets may be broken by reverse engineering. Physical protec-
tion can include denial of access to the cryptographic device and auto-
matic destruction of the keys if unauthorized access is attempted. 
Advances in very large scale integration (VLSI) make it possible to im-
plement the cryptographic function on a single chip that is highly resis-
tant to reverse engineering, even to the extent of self-destruction or 
zeroization of the keys. Such chips can be put into service with consid-
erably less physical protection than prior technology. In the final analy-
sis, however, reverse engineering does not help recover the keys. If, at a 
minimum, the key registers zeroize on an intrusion attempt, the infor-
mation they protect is still safe. 

Types of attacks 

Attacks and protection. Passive attacks consist of observation of in-
formation passing on a connection or residing in a file; release of mes-
sage or file content is the fundamental compromise. Active attacks 
include modification, delay, reordering, duplication, and synthesis. Ac-
tive attacks, resulting in message-stream modification (MSM) or file 
modification, offer three threats: 
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• Authenticity attack. Doubt of source and delivery to intended des-
tination of a message; doubt of origin of the file or message. 

• Integrity attack. Modifies information content. 
• Ordering attack. Changes sequence of information arrival at des-

tination; changes order of records in file. 

Communication protocols and computer operating systems generally 
offer minimal protection against these threats, unless they are specifi-
cally to support secure communications. Masquerading, or spurious ini-
tiation, is an attack in which an intruder attempts to establish a 
communications session by falsifying his or her identity. Encryption is 
the fundamental tool for countering these attacks. Release of message 
or file content and traffic analysis can be prevented; MSM (message-
stream modification), file modification, and masquerading can be de-
tected. 

There are several types of attacks that can be mounted against any 
cryptosystem. Some attacks attempt to recover the plaintext that corre-
sponds to some stolen ciphertext or to discover the key in which one or 
more cryptograms are enciphered. Others seek to exploit weaknesses in 
the system so that plaintexts or keys can readily be recovered no matter 
what keys are used and how frequently they are changed. A cryptosys-
tem designer must be wary of all these attacks. 

Ciphertext only. The most difficult form of attack against a system is 
the ciphertext-only attack, which requires that someone has captured a 
segment of ciphertext. With no other information, except possibly a 
guess at the cryptogram’s context, he or she attempts to determine the 
corresponding plaintext and, if possible, the key that was used. Many 
classical cryptosystems are vulnerable to ciphertext-only attacks which, 
given sufficient ciphertext, can be examined for evidence of the statisti-
cal properties inherent in the underlying plaintext language. Abel’s 
product cipher, which combines one substitution and two permutations, 
successfully prevents these statistical characteristics from filtering 
through to the encrypted message. 

It is always possible to begin a naive ciphertext-only attack. An in-
truder can expect that, if he or she begins exhaustively trying every pos-
sible decryption key from the space of all such keys, he or she will 
eventually try the correct one. Of course, if the key space is sufficiently 
large, that eventuality may not occur before the encrypted information 
no longer has any value, before the intruder losses interest, or before 
he or she dies of old age. Furthermore, there may be several different 
plaintexts that encrypt under different keys to the stolen ciphertext. 
The intruder has no way of knowing if an apparent decryption to some 
message that makes sense in the given context is, in fact, the correct 
decryption. 
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Alternatively, if the correct plaintext has no recognizable properties, 
the intruder cannot differentiate it from all the other trial decryptions 
he or she obtains. This situation occurs when the correct plaintext does 
not consist predominantly of real words or even of printable characters, 
but appears to be a random bit string such as the middle of a com-
pressed ASCII file or some other cryptographic key. 

These observations lead to several fundamental principles of system 
design. First and foremost, the key space must be large. The easier it is 
to recognize a correct decryption among all other possible decryptions 
the larger the key space should be. In the best of all worlds, the key 
space is so huge that an intruder would not even consider this attack, 
and the plaintext is so random that he or she could not recognize suc-
cessful decryption if he or she stumbled onto it. 

A known plaintext-ciphertext pair. Sometimes, through a lucky 
guess or other good fortune, an intruder has the plaintext that corre-
sponds to a segment of ciphertext. He or she then tries to discover what 
key was used in the hope that other data is encrypted in the same key. 
This situation is similar to the 1799 discovery in Rosetta, Egypt, of the 
Rosetta stone. This basalt tablet has an inscription in Greek, Egyptian 
hieroglyphic, and Demotic. The stone provided known plaintext-
ciphertext pairs that led to the decipherment of hieroglyphics. 

A chosen plaintext-ciphertext pair. If an intruder can somehow ob-
tain the ciphertext associated with one or more plaintexts possessing 
some special characteristics or the plaintext corresponding to cipher-
texts with certain specific patterns, his or her chances of discovering the 
key may be enhanced. Consequently, the chosen plaintext-ciphertext 
attack has the potential to be more dangerous than either the cipher-
text-only or the known plaintext-ciphertext attack. 

Encryption function standardization 

Interoperability, the ability for independently manufactured systems 
and subsystems to work together, is a major driving force for standardi-
zation. Market share competition is another driving force. Encryption 
standards can be used to protect information from intruders, yet permit 
mutually suspicious parties, such as competitive banks engaged in elec-
tronic funds transfer, to work with each other. The Data Encryption 
Standard (DES) is a well-know symmetric key encryption standard. The 
CCITT X.509 Secure Directory Service is a standard that includes the 
use of public key cryptography for certificates, which use a digital signature 
process. DES can be used for an encryption algorithm to provide for con-
fidentiality in conjunction with a system based on CCITT X.509. For ex-
ample, the Internet Privacy Enhanced Mail (PEM), which is discussed in 
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Essay 17, uses two algorithms, RSA and DES, and a variation of CCITT 
X.509. 

CCITT X.509 is one of several CCITT standards that pertain to secure 
international networking. For example, CCITT X.400 pertains to Mes-
sage Handling Services and does not assume the directory service. 
CCITT X.500 defines the use of certificates for Directory Service, and 
X.509 defines Secure Directory Service. 

In addition to the standardization of encryption functions, there are 
international requirements for the registration of cryptographic algo-
rithms. For example, the organizations that use nonpublic algorithms 
for secret messages may wish to identify these algorithms by neutral 
identifiers. Certain evolving protocols could be used to support this type 
of communication need. The Secure Protocol (SP) 4 at the Transport 
Layer is such a protocol, and it is being considered by ISO (International 
Organization for Standardization). ISO is also working to facilitate the 
registration of cryptographic algorithms. 

The data encryption standard 

Background. The United States National Institute of Standards and 
Technology (NIST, formerly National Bureau of Standards) established 
the Data Encryption Standard (DES) in 1977 as the federal standard en-
cryption algorithm, following a public solicitation for suggested algo-
rithms. The Data Encryption Algorithm (DEA), the algorithm in DES, was 
derived from a design submitted by IBM. DES is an example of conven-
tional cryptography, because the sender (Alice) and the receiver (Bob) 
share the same secret key. The standards are: 

• Federal Information Processing Standards (FIPS). Data Encryption 
Standard (DES), Publication (FIPS PUB) 46-1 (recertified until 1992, 
under review for recertification for another five years) and ISO 
standard IS 8372. 

• American National Standards Institute (ANSI). Data Encryption Al-
gorithm (DEA), X3.92-1981, and Model of Operation of the DEA, 
X3.106-1983. 

DES is designated for non-national-security applications such as elec-
tronic funds transfer (EFT). In the late 1970s, several cryptographic 
authorities commented that DES may become inadequate in 10 years. 
However, DES has been reaffirmed over the years by NIST. 

Recent information, however, has added new knowledge to the DES 
story. For example, the New York Times reported that DES is much 
stronger than people had thought. Adi Shamir and E. Biham had found 
an attack on DES that was initially reported as breaking DES, but that 
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actually is only a “slight improvement over laboriously trying every key.” 
Shamir said that DES is “the strongest possible code of its kind.” He said 
that his attack method “devastates similar codes,” while only slightly 
denting DES. 

DES technology. The Data Encryption Standard (DES) is formed as a 
product of substitutions and permutations. It is a block cipher using a 
64-bit block. The key consists of a 56-bit block, padded by eight parity 
bits, one for each byte. DES encryption begins with a 64-bit permuta-
tion. It ends with the inverse of that permutation. In between are 16 
rounds of confusion and diffusion. The message block is split into two 
32-bit halves. The old right half becomes the new left half. The right 
half is also replaced by using a number of small substitution ciphers. 
First, it is combined with 32 bits selected from the key and permuted. 
Then each group of four bits is replaced by a different four bits. For each 
group of four, there are four different substitution ciphers to be used. 
The choice for each group is determined by the first and last bit of the 
group, each combined with a different specified bit of the key. Decryp-
tion begins with the same initial permutation and ends with its inverse. 
In between, decryption goes through exactly the same rounds as en-
cryption, with only one minor modification. The key bits are used in the 
reverse order. 

Although each step in the Data Encryption Standard is a simple sub-
stitution, permutation, or exclusive OR operation, the total result is so 
complicated that an attempt to express a single ciphertext bit as a logi-
cal combination of the 64-bit block of plaintext and 56-bit key resulted 
in a computer printout that was several inches thick. 

The strength of DES. The DES algorithm is well publicized and has 
withstood intensive attempts of many people the world over, who have 
tried and are trying to break it. Even though none of these efforts has 
yet succeeded, considerable insight into the inner workings of this and 
similar algorithms has been developed. At the time of writing, NIST has 
reaffirmed DES in hardware and certified software implementation of 
DES. 

From the beginning, a major criticism of the DES has been the fact 
that each key has only 56 bits. That makes a key space of only 256 or 
about 7.2 × 1016 different keys. The first attack ever suggested against 
DES was an exhaustive, known plaintext-ciphertext search. It exploited 
the size of the key space as well as the relation between EXCLUSIVE OR 
and bitwise complementation. Through a clever trade of time and mem-
ory, it searched for the key that encrypted a stolen DES cryptogram. At 
the time, it was estimated that within 10 years a special-purpose device 
could be built to do all the needed encryptions in a reasonable time and 
at a reasonable cost. No such machine has been announced, but it be-
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comes more feasible with every improvement of microchip efficiency and 
price. 

As mentioned, recent attacks on DES by Biham and Shamir [BIHA90] 
have shed new light on the inherent strength of DES. Their analysis is a 
variation on the chosen plaintext theme. Their approach, which they 
call Differential Cryptanalysis, collects many different plaintexts and 
their ciphertexts. It catalogs differences in the plaintexts and collects 
statistics on the differences in the corresponding ciphertexts. Then, 
given a known plaintext-ciphertext pair, they find the most likely key 
used in encrypting that pair. The known plaintext-ciphertext pair is 
conceptually similar to the pairs on the Rosetta stone. They have 
gradually developed their attack that now it threatens a full 16-round 
DES. However, the time currently required to complete a successful at-
tack is, at this writing, no better than exhaustive search. 

The volume of data that must first be collected and the time needed 
to complete an actual attack against a single DES key do not yet seem 
to justify the death knell that has been sounded for the standard in re-
cent newspaper articles. Currently, Differential Cryptanalysis is an at-
tack only against Electronic Code Book, the simplest mode of use 
included in the standard. It is possible that similar approaches are pos-
sible and will be developed for the other three modes (described below). 
It is also likely that the authors of this attack will push its development 
further in the hope of making it a meaningful threat. 

Modes of operation 

The Data Encryption Standard includes a set of standard modes of op-
eration [NIST80]. These and one or two others are appropriate for use 
with any block cipher — that is, with any encryption algorithm that acts 
on a fixed-size plaintext block. Each mode possesses different character-
istics that are important in different situations. We describe them 
briefly. 

Electronic Code Book (ECB). The Electronic Code Book mode in-
volves simple block encryption of a message or a file. The process is il-
lustrated in Figure 3. The data is broken into blocks of a standard size. 
Each block in turn is the input to the encryption algorithm. The output 
blocks comprise the ciphertext message or file. For decryption, that mes-
sage or file is again divided into blocks, and each block is decrypted indi-
vidually. The resulting output blocks are concatenated to reconstruct 
the plaintext message or file. If an error occurs in a single ciphertext 
block, the decryption of only that block will be corrupted. 

Electronic Code Book has a major disadvantage. A single block that 
appears several times in the plaintext stream will be encrypted in the 
same way each time. Suppose the plaintext is a file of sensitive informa-
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tion in a database system. If each field in some record forms a single 
block, an intruder can browse cryptographically. While he or she may 
not know what the individual entries in each field are, he or she can 
identify which records have the same value in any specific field. Any side 
information about the meaning of a single encrypted field entry may give 
him or her similar knowledge about many other similarly encrypted en-
tries. 

The remaining modes of operation use the context of each plaintext 
block to modify how it is encrypted. Therefore, ECB is generally used for 
low-volume operations, such as encrypting master keys for transmission. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Electronic Code Book mode of DES. 
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Cipher Block Chaining (CBC). Cipher Block Chaining (CBC) is one 
way to change the encryption of plaintext blocks that repeat. CBC in-
volves the EXCLUSIVE OR (XOR) of every plaintext block with the pre-
ceding ciphertext block. The first plaintext block must be treated 
differently. It is XORed with a publicly known initialization vector (IV) or 
with a secret initialization vector that is distributed with the key. For 
each block, the result of the XOR is the input to the encryption algo-
rithm. The output of that algorithm becomes the next block in the ci-
phertext message or file. It is also XORed with the next plaintext block 
before that block is input to the algorithm. Figure 4 shows the process. 
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Figure 4. Cipher Block Chaining mode of DES. 
The first ciphertext block is passed through the decryption algorithm, 

and the output is XORed with the initialization vector. The result is the 
first plaintext block. Thereafter, each ciphertext block is passed through 
the decryption algorithm. The output block is XORed with the preceding 
ciphertext block. The result is the next plaintext block. If a single ci-
phertext block contains an error, neither the corresponding plaintext 
block nor the next one will be recovered correctly. However, even in the 
face of errors, as soon as two ciphertext blocks are error free, the de-
cryption is again successful. Such a scheme is called self-synchronizing. 

It is apparent that Cipher Block Chaining does solve the cryptographic 
browsing problem. Records with the same plaintext value in a particular 
field will not be identifiable because each value will be encrypted using 
the presumably different ciphertext in the preceding field. Anyone with 
authorized read or write access to that field in those records can still 
decrypt correctly. He or she needs only the encrypted value in the pre-
ceding field. However, if he or she changes the value in that field, the 
entire file must be re-encrypted from that point on. 

Cipher Block Chaining has another attraction. It can be readily used 
to create a message or file digest. Encrypt the data using this mode and 
save only the last ciphertext block as the digest. Then append the di-
gest to the message or file. Anyone who reads it can, if he or she knows 
the correct key, recompute the digest. If it matches the one that came 
with the unencrypted message or file, he or she knows that, with very 
high probability, the data was not changed. He or she also knows that 
the message or file originated with the only other person who holds the 
same key. Thus, he or she has both message authentication and origin 
authentication. We shall see other cryptographic techniques that yield 
similar assurances. 

Output and cipher feedback modes (OFB and CFB). Output and ci-
pher feedback modes (OFB and CFB) can be illustrated by the US De-
partment of Defense (DoD) Key Auto-Key or KAK and Ciphertext Auto-
Key or CTAK, respectively. Before introducing these examples, we intro-
duce applicable issues pertaining to stream ciphers, length of keys, and 
initialization vectors (IVs). 

Stream ciphers all have the property that they attempt to integrate 
context into the encryption. The key is a long bit stream that is to be 
combined, through an XOR or some other operation, with the plaintext 
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stream. What position a particular data segment takes in the plaintext 
stream determines with which segment of the key stream it will be com-
bined. If the data segment repeats itself, its different occurrences will 
most likely be encrypted with different key stream segments. They will 
be encrypted differently. 

The key can be either a long, completely random bit stream that must 
be delivered to both the encrypting and the decrypting stations, or a 
pseudorandom bit stream that is generated as needed. In the latter 
case, the authors prefer to reserve the word “key” for the pseudorandom 
seed and to refer to the pseudorandom bit stream that is generated as 
the “key stream.” It should be noted that, if a pseudorandom generator 
is used, it must be cryptographically strong. That means it must not be 
possible predict the rest of the key stream even if some keys are discov-
ered or guessed, as it might occur in a known plaintext-ciphertext at-
tack. 

One way to create cryptographically strong, pseudorandom bit streams 
is to use a block cipher like DES. Some fixed number of bits from the 
output block are added to the key stream on each iteration. The input 
to the block encryption algorithm is a shift register or a counter. In the 
latter case, the register is loaded with an initial value and incremented 
once after each encryption. The decryptor must start his or her counter 
at the same initial value. As long as he or she stays in synchronization, 
he or she will decrypt correctly. 

If the input is a shift register, it must be loaded with an initialization 
vector. After each iteration, the register contents are shifted the same 
number of bits that are added to the key stream from the block encryp-
tor output. The same number of bits are shifted in to fill the empty 
space in the register. They can be the same bits taken from block en-
cryptor output. In that case, we have Output Feed Back (OFB) mode, 
which is used in the US DoD Key Auto-Key (KAK). Alternatively, they 
can be the last bits encrypted. This is Cipher Feed Back (CFB) mode, 
which is known in DoD as Ciphertext Auto-Key (CTAK). At the decryp-
tor, exactly the same procedure is followed with the block algorithm 
used to encrypt. Now the key stream is combined with the ciphertext 
stream to recover the plaintext stream, and the ciphertext bits must be 
saved for use as feedback. 

The reader is encouraged to consider what happens if errors occur in 
the ciphertext stream. Both OFB and CFB are self-synchronizing. There 
are, however, situations in which this property is undesirable. If it is 
most important to flag where a ciphertext stream has been tampered 
with, it is better to feed back plaintext bits. Then errors introduced into 
the ciphertext stream cause errors in the plaintext, which are shifted 
into the input register of the block encryptor. This causes an erroneous 
output which, in turn, yields an incorrect decryption. The wrong plain-
text bits are again fed into the shift register and all decryption is incor-
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rect from the point of the ciphertext error on. This is a very strong indi-
cation that the ciphertext has been modified, either accidentally or ma-
liciously. 

Perfect confidentiality 

Perfect confidentiality can be achieved with a completely random key 
stream. For such an encryption mechanism, our distinction between key 
and key stream disappears. The key stream is the key. It must be as long 
as the message it is to encrypt. Although a courier with a large magnetic 
tape containing the random bit stream forms a communication channel 
with a large capacity, this encryption scheme seems somewhat un-
wieldy. Nonetheless, it does have a very important characteristic to rec-
ommend it for use in certain situations. 

Because the keys are completely random, it is possible to find a candi-
date key stream that decrypts a given intercepted ciphertext message 
into any plaintext message of the same length. A cryptanalyst has no 
way of determining which is the right key and which is the right plain-
text. Thus, there is one key that decrypts IPOOEHWLRCR as 
ILOVEMOTHER; another that yields IHATEMOTHER; a third that pro-
duces ATTACKATTWO; and one more that generates DONOTATTACK. 
The cryptanalyst has no way of determining which is the correct decryp-
tion. Stated another way, all decryptions are equally likely. In general, it 
is impossible for anyone who captures the ciphertext stream to deter-
mine statistically that one plaintext stream is more likely than any 
other. Even if he or she can guess a likely word in the plaintext, he or 
she cannot determine where to place it or what the remainder of the 
message might be. Perfect confidentiality occurs because no amount of 
analysis, and not even an exhaustive search were he or she to try it, 
will help the intruder guess the plaintext. This cryptosystem is un-
breakable. 

A stream cipher with a completely random key stream is called a one-
time pad. It derives its name from the keypad that its users once em-
ployed and from the fact that any use of a key stream more than once 
can be disastrous. If the key stream is reused, the difference between 
the two ciphertext streams is the same as the difference between the 
two plaintext streams, the key stream canceling. Now an analyst who 
looks at the differences between the statistically most common letters 
in the alphabet will yield a breaking of both plaintexts. The one-time 
pad is the only kind of cryptosystem that exhibits perfect confidentiality. 
As such, it is often used for the most important of diplomatic correspon-
dences. For everyday transmissions of lower priority between the many 
users of a communications network or the many files to be protected on 
sensitive databases, something less demanding in key handling is re-
quired. A block cipher, such as DES, in one of the feedback modes or a 
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key stream with some other cryptographically strong pseudorandom bit 
stream generator is an approximation to a stream cipher with a com-
pletely random key stream. 

All strive to achieve some form of computational security. This means 
that, given the computing resources available to a prospective intruder, 
it is very unlikely that he or she will be able to break a single crypto-
gram. In evaluating the computational security of a system, we must ex-
amine the computational time and resources required for each possible 
attack compared with legitimate decryption. This is the work factor as-
sociated with each attack. 

Some estimate of the intruder’s computing power and technology is 
also necessary. An intruder can compare his or her capability for attack 
with the potential value of the sensitive data he or she is trying to steal. 
That value can be measured in dollars, in time, or in intelligence. Unfor-
tunately, the last metric is somewhat difficult to quantify. If, given the 
size of the work factor, the cost of the computational power needed to 
mount each attack exceeds the value of the information we are protect-
ing, our system is computationally secure. 

 

Public key cryptography1 

Public key two-key cryptosystems may be considered to be supplemen-
tary to conventional cryptography, such as DES. Diffie and Hellman first 
envisioned a cryptosystem in which decryption keys cannot be derived 
from the corresponding encryption keys. Three public key systems that 
have been widely implemented are RSA (Rivest, Shamir and Adleman), 
ElGamal, and the Diffie-Hellman key exchange system. We use the RSA 
system as the main example for this discussion, because it is the most 
widely adopted by industry and the international standards community. 

As mentioned, the important difference is that public key cryptography 
uses matched pairs of keys. For example, Alice has one for encryption 
(EA ) and one for decryption (DA ). The encryption key is called the public 
key and the decryption key is called the private key. One entity is re-
sponsible for each matched pair. The strength of the public key process is 
twofold. First, the public key (Ek) can be electronically published in a 
network directory for wide access. Second, anyone (for example, Alice) in 
a network system can send a secret message to the holder of the private 
key (for example, Bob) by using the public encryption key of the recipi-
ent (EB ). 

Public key cryptography can provide secure key management or key ex-
change functions to transmit secret conventional keys to the receiver 
                                                

1The presentation on public key cryptography is adapted, in part, from 
[NECH91]. 
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(Bob) or perform an equivalent operation. This process supports mes-
sage privacy because the secret key, such a DES key, is transmitted with 
the protection of a public key algorithm. Message privacy is achieved using 
the conventional secret key to encrypt one or more messages between 
the sender (Alice) and the receiver (Bob). We discuss these and related 
issues in the subsequent sections. 

RSA uses a pair of parameters consisting of a public exponent and an 
arithmetic modulus. Briefly, the plaintext M (message) is represented as 
a sequence of bits by using some encoding scheme. The sequence is 
then divided into blocks X of the largest length that can be interpreted 
as the binary expansion of a number less than the modulus n. Encryp-
tion then produces numbers Y of the same binary length. The relation-
ships are as follows: 

 
n   =  Arithmetic modulus 
e   =  Public exponent 
d   =  Secret exponent 
Y   =  Xe mod n (0 < X < n) 
X   =  Yd mod n (0 < Y < n) 
X, Y =  Data blocks that are arithmetically less than the modulus 
 
The modulus n is chosen to be the product of two sufficiently large 

prime numbers p and q : n = p × q. The value of n and e together form 
the public key; d and the two prime numbers — p and q — constitute the 
private key. 

The exponents are chosen so that 
 
e × d = 1 mod (p − 1)(q − 1) 
 
A key length of between 512 to 1,024 bits is generally recommended 

for RSA, as compared with 56 bits for DES (plus 8 parity bits). For ap-
proximation purposes, we can say that the strength of the RSA using a 
key length of 512 bits is generally comparable to a key length of 56 bits 
for DES. One reason for the general comparability of such different key 
lengths is that the computational processes differ substantially. An at-
tack or cryptanalysis against RSA is considered, in part, to be a function 
of the difficulty to factor large numbers. Therefore, RSA is generally as-
sociated with large keys. The strength of DES is considered, in part, to 
be a function of the number of computational rounds in its algorithm 
(16 rounds). These 16 rounds, when coupled with a key length of 56 
bits, are claimed to provide adequate resistance to attack. 

Message confidentiality and authenticity. Message confidentiality 
can be supported by the transformations of public key systems that have 
the relationship D(E (M ) ) = M. The notation D(E (M ) ) = M refers to the 
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decryption of the ciphertext C = E (M ), which yields the plaintext mes-
sage M. The ciphertext is created by E (M ) or encrypting the plaintext M. 
We designate the sender A as Alice and the receiver B as Bob. 

For example, if Alice (A ) wishes to send a secure or private message M 
to Bob (B), then Alice must have access to EB (Bob’s public key). We de-
note the common encryption algorithm using Bob’s public key as EB and 
the common decryption algorithm with his private key as DB. The nota-
tion for this discussion of public key cryptography uses subscripts to refer 
to the sender (Alice) and the receiver (Bob) rather than keys. For exam-
ple, we say that Alice encrypts the message M with Bob’s public key 
(EB ). In other words, Alice encrypts M (the message) by creating cipher-
text C = EB(M ) and sends C to Bob. Bob reverses the process when he 
receives C by using his private transformation DB (Bob’s private key) for 
decryption. This process requires that Bob computes DB(C) = 
DB(EB(M ) ) = M. We also generally refer to this process as Bob uses his 
private key (DB) to “read” the encrypted message or ciphertext C. 

If Alice’s transmission is intercepted, the attacker or intruder cannot 
decrypt C (the ciphertext) since Bob’s DB (Bob’s private key) is only 
known by Bob. This process provides for confidentiality. We assume that 
any entity in the network can access EB (Bob’s public key), because Bob 
has no means of identifying the sender. Also, Alice’s transmission could 
have been changed. Therefore, authenticity and integrity are not assured 
in this example. However, authenticity and integrity can be provided. 

Authentication of the sender (Alice) and integrity of the message (M ) can 
readily be satisfied by using certain public key processes. The mathe-
matical transformations in a public key system can be achieved in a vari-
ety of ways. In general, where Alice wishes to send an authenticated 
message M to Bob, he is able to verify that the message was sent by Al-
ice and was not changed. Alice could use DA (Alice’s private key) to com-
pute S (signature or signed text) = DA (M ) and send S to Bob. We 
generally refer to this process as Alice signing her message. The signed 
message is also referred to as a digital signature. Bob can use EA (Alice’s 
public key) to find EA (S) = EA (DA (M ) ) = M. Assuming M (message) is valid 
plaintext, Bob can verify that S was actually sent by Alice, and was not 
changed in transit. Verification follows from the one-way nature of EA 
(Alice’s public key). If a cryptanalyst or an intruder could start with a mes-
sage M, he or she could find S′ such that EA (S′ ) = M. The implication is 
that the intruder can invert or reverse EA. However, inversion is not 
computationally feasible in this public key process. 

Verifying the sender’s (Alice’s) identity could be difficult if M (the mes-
sage) or any portion of M is a random string. For example, it may be diffi-
cult for Bob to determine that S is authentic and unchanged based only 
on review of EA(S). 

In practice, a slightly more complex procedure is generally used. Vari-
able-length long messages are uniquely reduced to fixed-length repre-
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sentations by an auxiliary public hash function or algorithm H. There-
fore, Alice is actually “signing” (H (M ) ). This process yields a digital signa-
ture S = DA(H (M ) ). Alice sends her digital signature S, which is unique to a 
given message M, to Bob along with M. If Alice encrypts her message M 
and digital signature S = DA (H(M ) ) with Bob’s public key (EB ), we can say 
the result is a digital envelope. 

Bob can compute H (M ) directly when he receives a digital envelope. 
First, he “opens” the envelope by decrypting it with his private key (DB).  
Second, H (M ) is found by using Alice’s public key to operate on her sig-
nature S — that is, EA (DA(H (M ) ) ) = H (M ). Third, H(M ) may be checked 
against EA (S) to ensure authenticity and integrity of M. The ability of a 
cryptanalyst or intruder to find a valid S′ (digital signature′) for a given M 
(message) would violate the one-way nature of E . The hash function or 
algorithm (H ) must also be one-way. A strong hash function has the 
property that it is computationally infeasible to find a message (M )  
which hashes to the same digest as a given message (M ′ ) with H (M ) = 
H(M ′ ). A security risk is that if Bob could find M ′ with H (M ′ ) = H(M ),  
then Bob could claim that Alice sent M ′. A judge receiving M ′, H (M ) and 
S would reach a false conclusion. 

Sending C (ciphertext) or S (digital signature) as shown above ensures 
authenticity and confidentiality. Confidentiality was provided because only 
Bob could “open” the digital envelope containing M and S. Bob used his 
private key (DB) to open it. 

If no digital envelope were used, M (the message) and S (the digital 
signature) would be transmitted in the clear. An attacker or intruder 
who intercepts C (ciphertext) = S = DA (Alice’s private key) (M ) may have 
access to EA (Alice’s public key) and could therefore compute M (mes-
sage) = EA (C ). Therefore, confidentiality of M is denied. 

International electronic commerce may require communication sys-
tems that provide confidentiality, authenticity, and integrity. However, in 
some cases it is possible to use the same public key system for these 
security services simultaneously. For example, RSA supports digital signa-
ture and confidentiality. In the authenticity/integrity-related process, D (de-
cryption) is applied to M (message) or H (M ). This contrasts with applying 
E (encryption) to M (message) for confidentiality. If the same public key sys-
tem is to be used in both cases, then D(E (M ) )  = M and E (D(M ) ) = M 
must both hold; that is, D (decryption) and E (encryption) are inverse 
functions. A requirement is that the plaintext space (the domain of E ) 
must be the same as the ciphertext space (the domain of D). 

In practice, there are no generally available systems versatile enough 
for the last usage without modification. There is only one major public 
key system (RSA) that satisfies E (D(M ) ) = D(E (M ) ) = M (message). The 
absence of a common domain between two users creates a technical 
problem in using such a system for confidentiality and authenticity. 
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Figure 5 illustrates a method of achieving confidentiality and authentic-
ity in a public key process. The message M is placed in a digital envelope 
which is sealed with Bob’s public key (EB ). 

The public key process in Figure 5 is a simplified version of a process for 
confidentiality and authenticity. Certain issues, such as the question of 
domains, are not considered in the figure. The illustrated public key sys-
tem complies with a hash function H. This system works with any en-
cryption and any signature. They need not be related. However, the 
verification for the DSS is slightly different. 

Applicability and limitations. Public key algorithms are computation-
ally intensive. Therefore, confidentiality of M (the message) can be achieved 
only for short Ms. The resulting slow encryption process may be referred to 
as a low-bandwidth secure transmission. In contrast, conventional key al-
gorithms, such as DES, are must faster for encryption. Therefore, conven-
tional key algorithms can produce wide-bandwidth secure transmissions. 
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Key 
C : Ciphertext 
D : Decryption 
E :  Encryption 
H : Hash function 
M :  Message 
S : Digital signature 
Note: H ′  and M ′ are recomputed H and M. 

 
Figure 5. Using a public key process for confidentiality and authenticity. 

Chip and algorithm breakthroughs will most likely continue to occur. 
Therefore, we do not rule out certain near-term and long-term uses of 
public key algorithms for message privacy. However, bulk encryption re-
mains the domain of conventional cryptographic systems. These systems 
use fast encryption techniques such as permutations and substitutions. 

The international electronic commerce process uses public key for two 
major applications: 

• Secure distribution of secret conventional keys, such as DES keys, 
for bulk encryption. 

• Digital signatures (Ss). 

In electronic commerce, there is a need for confidentiality of conven-
tional decryption keys and public key private keys. There is also a need 
for integrity of encryption keys, symmetric or asymmetric. For example, if 
Alice can trick Bob into believing that the encryption key she sent him 
(for which she has the corresponding decryption key) is that of the 
president of the XYZ Corporation, then she can read any secret that 
Bob is sending him. This case includes any conventional key system 
used by Bob to send the president of XYZ encrypted data. 

Digital signature 

Authentication, nonrepudiation, and integrity checks can be supported with 
a digital signature. A digital signature is similar to a written signature, how-
ever, it is stronger. For example, detection will result from any attempt 
to change the message content or to forge the signature. We note that a 
Message Authentication Code (MAC), as defined in ANSI X 9.9, provides 
integrity protection against alteration, but does not provide nonrepudiation 
because of the sharing of the conventional secret DES key. (Another 
term for a MAC is a manipulation detection code, or MDC.) 

A digital signature must be a function of the entire document. Changing 
even a single bit should produce a different signature. A signed message 
cannot be changed without detection. 
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Public key digital signatures. The use of public key digital signatures 
and supporting hash functions can provide both authentication and verifi-
cation of message integrity. Hash functions, which have been briefly in-
troduced, will be discussed further. They can also serve as cryptographic 
checksums used for validating the contents of a message. Public key 
schemes supporting authentication permit generation of digital signatures 
algorithmically from the same key repeatedly, although the actual signa-
tures are different. Digital signatures are a function of the message and a 
long-term key. Therefore, key material can be reused many times before 
replacement. Hash functions also reduce the impact of the computa-
tionally intensive nature of public key algorithms. 

Public key digital signatures are generally preferred for electronic com-
merce because 

1. private keys can be used repeatedly for generating digital signatures 
algorithmically, and 

2. nonrepudiation of the sender (Alice) is inherently a part of the sys-
tem design. 

Therefore, public key implementation of digital signatures is effective and 
versatile. 

Nonrepudiation. Nonrepudiation is the system capability that prevents a 
sender (Alice) from denying that she has sent a message. The integrity of 
nonrepudiation is a function of the degree of security maintained for the 
sender’s (Alice’s) private key (DA) [NEED78, POPE79]. For example, Alice 
could repudiate or deny sending a message if DA is compromised. De-
pending on the applicable legislation, Alice may still be held liable for 
messages signed before the compromise was reported to a central 
authority. Certain administrative approaches have been proposed for 
incorporation into protocols. Most of these involve use of some form of 
arbitrator [DEMI83]. However, certain disputes may require litigation, 
because nonrepudiation is a critical business issue. 

One method of supporting nonrepudiation is to use a central authority. 
For example, the receiver of a message (Bob) sends a copy to the central 
authority. The central authority can verify sender’s (Alice’s) signature. 
This verification provides assurance that there is no report that Alice’s 
private key (DA ) was compromised at the time of sending. In this case, 
Alice would have to rapidly report the compromise of her private key. We 
must also consider the impact of the increased workload of the central 
authority on the throughput of the network. 

An alternate approach is to use time stamps [DENN81, MERK82]. Al-
though a network of automated arbitrators may still be required, the 
system overhead is modest because the arbitrators only have time 
stamp messages. A receiver (Bob) may check the validity of the sender’s 
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(Alice’s) private key by checking with a central authority. Bob has a de-
gree of assurance of nonrepudiation if the received message is time 
stamped before the validity check. He still has to determine if a com-
promise is discovered and reported later. 

Legal requirements for nonrepudiation may include a requirement that 
the sender (Alice) is responsible for signing until a compromise of her 
private key is reported to the central authority. Implementation of this 
approach could require an on-line central authority and real-time valid-
ity checks and time stamps. In addition to peak load concentrations that 
may occur at the central authority, certain requirements for a network-
wide clock should be considered. A network-wide clock has other secu-
rity vulnerabilities, such as vulnerability to forgery of time stamps 
[BOOT81]. 

If users, such as Alice, are permitted to change their private keys, a 
central authority should archive past keys to assist in resolving dis-
putes. Each industry should have a set of legal and administrative safe-
guards to maintain continuity of operations in the event of a 
compromise or change of keys. For example, credit card systems have 
effective legal and administrative provisions for cases of lost or stolen 
credit cards. 

Hash functions. Hash functions or algorithms (H) have been intro-
duced as a method of producing a fixed-length representation of a vari-
able-length message M. As mentioned, public key algorithms are 
generally computationally intensive and compute more slowly than con-
ventional algorithms. Therefore, it is usually not desirable to apply a 
digital signature directly to a long message. Since we also want to sign the 
entire message, we need an algorithm to reduce the size of the mes-
sage. Hash functions or algorithms meet this need for computation of 
digital signatures to supplement public key techniques. For example, MD 
(Message Digest) 4, from R. Rivest, produces a 128-bit representation or 
message digest of a variable-length message. RSA is used to encrypt this 
message digest with sender’s (Alice’s) private key (DA ). This becomes S = 
DA(H (M ) ). Other hash functions that can be used include MD 5, from R. 
Rivest, which essentially adds an additional computational round to MD 
4. 

The encrypted message digest is a digital signature that can be attached 
to the message for secure transmission in a digital envelope (in this 
case, containing the digital signature and the message M ). As mentioned, 
a digital envelope is sealed by the public key EB of the receiver, Bob. 

The receiver (Bob) may validate the signature on H(M ) and then apply 
the public function H (hash function) directly to M (message) and verify 
that it matched the received signed version of H(M ). Authenticity and 
integrity of M are validated simultaneously. Only integrity would be as-
sured if H(M ) were unsigned. 
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Hash functions should produce unique message digests. However, it is 
theoretically possible that two distinct messages could be reduced to an 
identical same message digest and cause a collision. Collisions cannot 
be avoided completely because there are generally more potential mes-
sages than the number of possible message digests. In practice, the 
probability of collisions should be very low. For hash functions with ran-
dom or near random output, the probability of collisions is a function of 
the size of the message digest and the number of bit sequences that are 
meaningful messages. 

In public key cryptography, the minimum requirements for a hash func-
tion include the ability to adequately support the authentication process. 
For example, if we have a message M and a message digest MD, it must 
not be computationally feasible to find another message M ′ that also 
reduces to MD. Therefore, forgery can be avoided because appending 
the signed MD to M ′ would not verify as a valid signature. 

Public key digital signature sequence. A public key digital signature proc-
ess is briefly highlighted: 

1. Compute a unique fixed-length message digest MD from the mes-
sage M. 

2. Use Alice’s private key (DA ) to form the signature as encrypted 
hash, that is, DA(H (M ) ) = S. 

3. Attach Alice’s signature S to her message M. 
4. Seal in a digital envelope M and S with Bob’s public key (EB ) for 

authenticity and confidentiality. 
5. Bob opens the digital envelope on receipt using his private key 

(DB). 

Confidentiality is provided with the digital envelope, because only Bob 
can open the digital envelope with his private key (DB). He validates Al-
ice’s signature S by computing H (M ) = EA (S). As mentioned, Alice’s public 
key (DA ) is a trapdoor one-way function. Therefore, an intruder should 
not be able to determine S′ such that H(M ′ ) = EA (S′ ) for a given forged 
message M′. As a result of this situation, Alice’s signature cannot be 
forged. Also, if Alice attempts to repudiate the message sent to Bob 
above, Bob may present M (message) and S (digital signature) to a judge. 
The judge can use Alice’s public key (EA ) to compute H (M ) = EA (S ). If 
Alice’s private key has been kept private, then only Alice could have 
sent S. This is nonrepudiation. 

To provide for nonrepudiation, Bob can use his private key to open DE 
(digital envelope) = M, DA (H (M ). A judge can use EA (Alice’s public key) to 
operate on DA (H (M ) and compare the results to H(M ). 
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Digital signatures and certificate-based systems. Electronic commerce 
requires sender authentication, data integrity, and nonrepudiation. These 
three security services are achieved with the use of digital signatures in dis-
tributed open systems. Certificate-based public key systems provide effec-
tive implementation. 

For example, the Internet uses certificates to make public keys avail-
able to authorized entities. These issues are discussed in Essay 17 on 
Privacy Enhanced Mail (PEM). For example, PEM uses RSA and certifi-
cates derived from CCITT Recommendation X.509 for Secure Directory 
[CCIT88c]. Using RSA in X.509, Bob’s (the receiver’s) public key is crypto-
graphically sealed (wrapped) in a certificate, along with other identifica-
tion information. A trusted third party, called a Certification Authority 
(CA) in X.509, uses its private key (DCA) to seal the certificate. The use 
of PEM and X.509 with DSS may not be exactly the same as for RSA. 
The PEM protocols may need to be extended to facilitate multiple algo-
rithms. 

Since X.509 provides for multiple CAs, a certification authority hierar-
chy or tree can be constructed. Authorized network entities (users) have 
the applicable CA’s public key to decrypt or unseal the receiver’s (Bob’s) 
certificate in a directory. It may be necessary to repeat the process for 
nested certificates. The result is the receiver’s (Bob’s) public key, which 
can be used to send encrypted messages to Bob that only he can de-
crypt with his private key. Certificate-based key management is another 
way of describing this process. This process supports a zero knowledge 
technique that is being standardized as DIS 9979. 

Public key management 

In public key systems, the key management problem is inherently sim-
ple and relatively low risk (compared with conventional key manage-
ment, for example, ANSI X9.17). For instance, the key information to be 
exchanged between users, or between a user and a central authority, is 
public. Also, a physical mail system might be satisfactory to communi-
cate with the central authority, if redundant information is sent via an 
insecure (electronic) channel. 

Management of public keys. We have briefly introduced the need for 
Alice and Bob to exchange their public keys. One reason is that public 
keys do not need privacy in storage or transit. For example, public keys 
can be managed by an on-line or off-line directory service, or they can 
also be exchanged directly by users. 

Integrity has also been introduced. For example, if Alice thinks that the 
intruder’s public key (EI) is really Bob’s public key (EB ), then Alice could 
possibly encrypt using EI. The result would be that I could decrypt using 
DI. Integrity should also be considered, because any error in transmission 
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of a public key could eliminate its usefulness. Therefore, error detection 
is desirable. 

A central authority, such as the Certification Authority (CA) that we 
introduced, is generally required for electronic commerce. However, 
there are situations where the CA may not have to be on-line. For ex-
ample, Alice could retain Bob’s public key for future use. 

Use of certificate-based key management. We introduced certifi-
cate-based key management as a way of providing authenticity and in-
tegrity in the distribution of public keys [KOHN78]. A certificate-based 
system requires a central issuing authority CA (Certification Authority in 
CCITT X.509). For example, Alice will generally follow some form of identi-
fication and authentication procedure in registering with the CA. In addi-
tion, registration can be handled by a tree-structured system. In this 
case, the CA provides certificates to local CAs. The local CAs can register 
users at lower levels of the hierarchy. 

In the general case, Alice receives a certificate signed by the CA (Certi-
fication Authority) and containing EA (Alice’s public key). The CA pre-
pares a message M containing EA, identification information for Alice, a 
validity period, and so on. Her certificate is computed by the CA as 
CERTA = DCA(M ). A certificate is a public document that contains EA and 
authenticates it. The authentication occurs because the CA signs CERTA. 
As we have mentioned, certificates can be distributed by the CA or by 
users. Our discussion of certificate validity can also be considered as a 
generalization of time stamping. 

There are exceptions to the utility of time stamping. For example, a 
certificate may be compromised or withdrawn before its expiration date. 
Therefore, if certificates are retained by users (rather than being re-
quested each time from the CA), the CA must periodically publish an 
invalidated certificate list. 

Public key and conventional key management issues 

We need public key management for confidentiality of private keys and in-
tegrity of public keys. In addition, we need secure delivery for conven-
tional secret keys to assure confidentiality and integrity. In either case, if 
we have a hierarchy of keys with the confidentiality and/or integrity of 
each key guaranteed by some key one level up, we need the secure de-
livery of the key at the highest level in some secure channel. Public key 
standards that provide for these considerations include CCITT X.509 
and the Internet Privacy Enhanced Mail (PEM). 

Secure delivery of certain keys, such as public keys, may involve deliv-
ery in a nonelectronic channel at the highest level of trust. For exam-
ple, some public keys may be delivered in person or by trusted courier to 
a Certification Authority (CA). 
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The applicable standards involve, in part, using public key systems for 
secure and authenticated exchange of verified identities and data-
encrypting keys between two parties. Data-encrypting keys are secret 
shared keys connected with a conventional cryptographic system that 
may be used for bulk data encryption. The public key approach permits 
users to establish common keys for use with a system such as DES. 

Conventional key systems often use a central authority for assistance 
in the key management and exchange processes. Use of a public key sys-
tem permits users to establish a common secret key without the riskof a 
third party having the secret key. In other words, a public key system has 
a lower risk than a conventional key cryptosystem for key management 
and exchange. Therefore, international standards to support the evolv-
ing open distributed processing systems include public key management 
concepts. 

Public key cryptography can be used to distribute conventional secret 
keys securely and effectively. The overhead is modest because keys are 
essentially short fixed-length messages. Also, digital signatures are gener-
ally applied only to outputs of hash functions, which are also the 
equivalent of short fixed-length messages. Therefore the bandwidth 
limitation of a public key cryptosystem is not a major factor for these ap-
plications. 

Authentication, integrity, and key management issues 
for conventional key systems 

We focus in this section on issues pertaining to MAC for authentication 
and integrity (X9.9) and a related standard for conventional key manage-
ment (X9.17). Digital signature is discussed in the following section. 

Certain financial systems use conventional cryptography to provide for 
authentication and integrity of financial messages. In this case, encryption 
is performed and used to generate a MAC, which is appended to the 
cleartext for transmission. The receiver (Bob) calculates the MAC and 
compares the calculated and received MAC. A match ensures that the 
sender (Alice) possessed the proper conventional encryption key and 
that the message was undamaged. The limitation of the MAC process is 
that Alice and Bob share the same secret key. 

Historically, MACs have been used to provide message authentication in 
financial systems. The message remains in cleartext, which may be re-
quired in certain international banking communities. One of the diffi-
culties of using MACs has been the complexity of conventional key 
management. However, a standard has evolved to assist in key man-
agement for well-defined communities. 

We briefly introduce two representative ANSI (American National Insti-
tute of Standards Institute) standards for wholesale banking that have 
also been adopted internationally: 
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• ANSI X9.9-1982, 1986: Financial Institution Message Authentica-
tion (Wholesale). 

• ANSI X9.17-1985, 1991 (Extension): Financial Institution Key 
Management (Wholesale). 

It is important to note that in the interbank (wholesale) electronic funds 
transfer environment the primary goal is authentication rather than pri-
vacy. Privacy can be provided only by use of an additional key. 

Message Authentication Code (MAC): Standard ANSI X9.9-1982, 
1986. The Message Authentication Code (MAC) (ANSI X9.9), not to be 
confused with Mandatory Access Control (MAC), is a cryptographic 
checksum appended to a message. It seals the message against modifi-
cation. All fields such as time, date, sources, and so on included in the 
checksum are rendered unalterable. Either the entire message or se-
lected fields are processed through the algorithm using the Cipher Block 
Chaining Mode (CBC). As mentioned, the last block is the only output of 
the process that is used in the MAC. MAC requires a key management 
protocol, such as ANSI Standard X9.17. 

Financial Institution Key Management: Standard ANSI X9.17-
1985, 1991 (Extension). There are three environments in ANSI X9.17 
for conventional key establishment: 

• Point-to-point environment. Two parties share a master key, and the 
master key is used for distribution of working keys. 

• Key Distribution Center (KDC) environment. Master keys are gener-
ated by a Key Distribution Center and are shared between each 
entity and the centralized server. 

• Key Translation Center environment. One entity originates the 
working key. (This is a minor variation on Key Distribution Cen-
ter.) 

Two entities can share in the key management process in a point-to-
point environment. Each entity has the same master key that is used to 
distribute working keys for individual messages. Working keys are gen-
erally changed periodically, depending on the risk associated with the 
application. For example, a high-risk environment could require a new 
working key for every transaction or every day. 

The full implementation of this standard involves the second option, 
namely, the Key Distribution Center (KDC) environment. A trusted en-
tity in the network is designated to perform the KDC functions for a de-
fined community of users. Each entity in the user community has to 
establish a trusted relationship with the KDC, which has a duplicate of 
each of the user’s master keys. 
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A Key Translation Center is used when one of the entities wishes to 
perform some of the KDC functions. This entity originates the working 
keys for the user community. 

Risk and cost of conventional key management. The concentra-
tion of risk is a security disadvantage of conventional key management. 
Risk concentration may be considered a function of the need to have 
the secret keys for a network community concentrated in one node. 
Also, the cost or overhead of conventional key management is relatively 
high because of the need for the KDC to share all master keys. Substan-
tial complexities may occur if a large number of KDCs wish to join to-
gether in ad hoc relationships to support international electronic 
commerce. 

For example, if Alice and Bob wish to communicate securely, they 
must first securely establish a common key. As mentioned, one possibil-
ity is to employ a third party such as a courier. Historically, couriers have 
been used; however, electronic commerce requires electronic key man-
agement. 

The most common approach for Alice and Bob to use in conventional 
key management would be to obtain a common key from a central issu-
ing authority or a key distribution center [BRAN75]. The higher risk oc-
curs because the key distribution center is at risk to attack from an 
intruder. Unfortunately, a single security breach by an intruder would 
compromise the entire system. For example, the intruder could passively 
eavesdrop without detection. 

The higher overhead of a key distribution center occurs, in part, be-
cause of the bottleneck effect. Since each pair of users needing a key 
must access a key distribution center at least once, the volume of activ-
ity would increase rapidly. If the number of users is n, then the number 
of pairs of users wishing to communicate could potentially be as high as 
n(n − 1)/2. In addition, each time a new secret key is needed, at least 
two communications are required for the user pair and the key distribu-
tion center. Furthermore, network availability could become a function of 
the key distribution system. Questions should also be asked concerning 
the capability for maintaining effective access control for the system con-
taining the secret keys. Examples of systems that provide this type of 
access control are security-enforcing or trusted systems. 

Other aspects of conventional key management are not unique to 
conventional cryptography. For example, life-cycle management is re-
quired over the life of conventional keys, which can include the need for 
archiving, for example, five to 30 years for business purposes. Life-cycle 
management procedures include distribution, storage, and destruction. 
Key maintenance is also required. For example, some keys may be lost 
or compromised. In addition, employee changes may make it necessary 
to cancel some keys and issue others. 
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Manual key distribution must occur at least once for conventional 
cryptographic key management, after which automated distribution can 
occur. Master keys or key-encrypting conventional keys (KEKs) are the 
manually distributed keys. These keys are used only to encrypt other 
conventional keys called “working keys.” Other terms for “working key” 
include “data-encrypting keys” (DEKs). 

An introduction to encryption in networks 

We briefly discuss some network aspects of encryption. Our purpose is 
to introduce some of the common terms and concepts for link and net-
work encryption. However, we do not address the encryption issues as-
sociated with communication protocols and internetworking. For some 
of these issues, see Essays 17 and 18. 

Relating encryption to data network communications. The in-
creased application of communication technology in international elec-
tronic commerce has accelerated the need for security in data network 
communications. These communications support global interconnectiv-
ity and distributed operations, thereby introducing security risks. New 
developments in communication protocols offer promise of providing so-
lutions to reduce certain security risks. A protocol specification details 
the control functions that may be performed, the formats and control 
codes used to communicate those functions, and the procedures that 
the two entities must follow. We introduce some of the basic issues that 
are useful when evaluating security services that can be satisfied with 
encryption mechanisms. 

Link encryption. The most straightforward application of encryption is 
to the communications link. Information is not processed as it passes on 
a link. There are no packet switches, no gateways or other intermediate 
systems. All of the information can be encrypted to prevent release of 
message contents. Traffic analysis can also be prevented by padding 
(adding null or blank characters so that all messages are the same 
length). Padding entails no additional cost if dedicated links are used; 
the converse is true on shared links. Link encryption provides protec-
tion only on the communications link. Information in an intermediate 
node reverts to plaintext. Protection of this plaintext involves physical 
protection of the node hardware and trust of the node software. Natu-
rally, there are costs associated with physical protection as well as op-
eration of the encrypted links, mostly in key management and 
distribution. 

Link encryption is the oldest and most common form of encryption in 
computer networks. In a packet-switching network, link encryption can 
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be used to encrypt the communication links between keys such as 
hosts and switches. 

A simple view of data communications is to consider the system as 
composed of two pieces of equipment closely collocated. The communi-
cation path is protected and error-free, and possesses unlimited band-
width. Equipment must be added to approximate this ideal in the real 
world. 

Link encryption illustrated. Figure 6 shows a schematic representation 
of data circuit-terminating equipment (DCE) adapting a physical circuit 
to carry data communications. Figure 7 adds encryption equipment. 

 
 
 
 
 

Figure 6. Data circuit without encryption (DTE: data terminal 
equipment; DCE: data circuit-terminating equipment). 

 
 
 
 
 

Figure 7. Data circuit with encryption (E: data encryption equipment). 
 
 
Link encryption for point-to-point circuits. Link encryption is appropriate 

for point-to-point circuits. In addition, it can be easily placed in the OSI 
context. For example, the entire bit stream is encrypted when link en-
cryption is present at the Physical Layer, layer 1. Encryption at the Data 
Link Layer, layer 2, results in some fields in plaintext and others en-
crypted. 

End-to-end encryption. End-to-end encryptionencryption (E3 or E3) is 
different from link encryption in that we no longer have to expose in-
formation in cleartext in packet switches — that is, at each node. The 
reason for this difference is that E3 refers to encryption above the Data 
Link Layer. Simple link encryption is inadequate when applied to ISO 
layered protocols for wide area networks (WANs) in layers 3 to 7, be-
cause commercial WANs generally do not provide link encryption capa-
bilities among the switches. 

When discussing E3 with respect to the ISO seven-layer model, we 
usually refer to encryption by layer. For example, encryption in layer 3 or 
4 could be called Network or Transport encryption, respectively. Certain 
protocols that are being considered by ISO use more specific designa-
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tions, such as encryption at the top of layer 3 (SP3, Secure Protocol 3) or 
the bottom of layer 4 (SP4). 

Encryption must be generalized to protect the protocol data units 
(PDUs) at a given layer. Extending encryption into higher protocol layers 
increases the number of entities protected, at the cost of interfacing 
and the overhead associated with additional hardware and/or software. 
Higher layer encryption and the accompanying protocols can be intru-
sive. However, substantial hardware and software advances are being 
made. Therefore, there is a gradual international trend to higher layer 
encryption and encryption in commercial application software packages. 

File encryption for storage protection. File encryption is the en-
cryption of a file in a computer system and/or a distributed processing 
system. It gives protection in case someone breaks through electronic 
system defenses and accesses the file. File encryption also enables us to 
put the file on a floppy disk and mail it without any special protection. 
In other words, file encryption substitutes for physical protection. The 
main problem with file encryption is losing the key. Losing the key in file 
encryption is like losing all our data when our hard disk crashes, except 
that, with file encryption, our backup copies probably are lost as well. 

A process that uses encryption to cryptographically “sign” or “seal” 
software before distribution has been introduced as digital signature. The 
digital signature is used to verify the integrity of the software in operation. 

Integration of computer and communications security 

In the past, computer security was used inside computers, and com-
munications security was used outside on the transmission lines. Today 
this boundary is disappearing as file encryption, digital signatures, mes-
sage integrity, E3 or E3, password encryption, and other such applica-
tions are incorporated into computer systems. This change can 
strengthen functions such as identification, authentication, and access con-
trol. However, the integration of the two disciplines will require the in-
terface of two cultures as two sets of rules are combined. This 
integration is complicated by the development of internetworking, which 
is bringing many technologies together, such as wired and wireless com-
munications. 

This interface of the two disciplines — computer and communications 
security — may require answers to systems questions. For example, 
should this integration of security-enforcing or trust technology in com-
puter security (COMPUSEC) and cryptography in communications secu-
rity (COMSEC) require that the information system provide both sets of 
security attributes — computer and communications security, that is, 
information security (INFOSEC)? Even as we bring the two disciplines 
together, we still may need well-defined interfaces and boundaries for 
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reasons of modularity, certification, and international electronic com-
merce. 

 


